Advancing the Art of Winemaking through/with Science: Impact of Grape Ripening on Wine Phenolics and Sensory Attributes

Jim Harbertson

Washington State University

Introduction

- Grape Ripening and its Influence on Wine Composition (DOA)
- Fruit and wine relationships are complex
- Not many relationships between grapes and wine are:
- WYSIWYG "wiz-ee-wig"

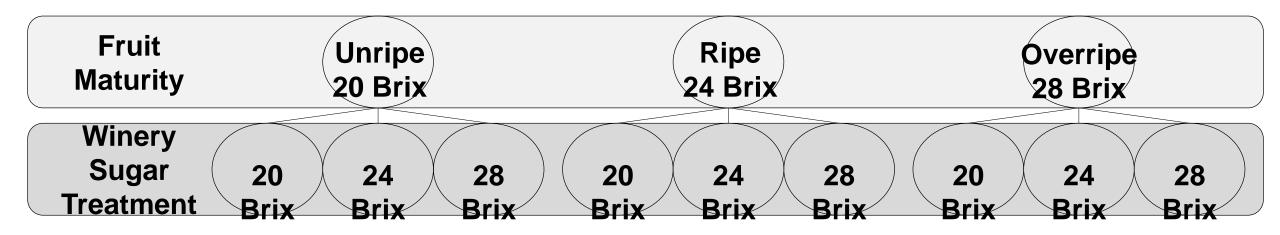
Complex Relationships: Grape and Wine Flavor

- What you taste in fruit is not what you taste in wine?
 - Some flavor compounds are bound as precursors
 - Some flavor compounds are not
- Flavor compounds are changing during ripening
- Some influenced by vineyard practices
 - Sun exposure: IBMP, TDN
- How does wine composition influence this relationship?
 - Ethanol solvates hydrophobic compounds that we smell and taste

Complex Relationships: Color and Tannins

- Relationship between fruit and wine tannin is awful (DOA)
 - Cell wall compounds: polysaccharide
 - Sponge of complex polysaccharides that must be satisfied (bound) before you can get free tannins into wine
 - Ethanol has some influence on extraction
- Relationship between fruit and wine anthocyanins isn't great either (RBB)
 - Copigmentation: Influence of [A] & Co-factors
 - Extraction equilibrium (adsorption/desorption phenomenon)
 - Not quite like the sponge but similar
 - Ethanol has no influence on extraction

How does fruit composition influence polymeric pigment formation?


- Chemical Train Wreck: Polymeric Pigments (DOA)
 - Reaction between an anthocyanin and variety of wine components
 - Primarily tannins
 - Form stable color in wines
 - Coloration is less effected by pH changes and bisulfite bleaching
 - Modify mouth feel over time by decreasing astringency (theoretical still)
- Anthocyanin: Tannin thought to drive formation
 - Evidence in literature is negligible
 - Heat, O₂, Lack of O₂: all influence formation
 - Reactions take time so we will need a way around this

Experimental Design

- Pick fruit at different soluble solids: 20 Brix, 24 Brix, 28 Brix
- Represent different winemaking eras and extraction effect
 - ~ 12 %, 14%, & 16% (v/v) Ethanol
- Wines not skin or seed extracts
 - Phenolics extracted from wines Day 10 and subjected to heat treatments
 - Heat treatment based upon work done by Vidal et al. 2002
- Ethanol is controlled for at each harvest by dilution or sugar addition
- Cultivars that naturally have different A:T ratios selected for study
 - Syrah (High Pigment: Mid Tannin)
 - Cabernet Sauvignon (High Pigment: High Tannin)

Winemaking Procedure

- Syrah and Cabernet Sauvignon
- Wines replicated sugar content of other maturity treatments
 - Controlled for maturity vs. ethanol effects

 Experiment designed so wines would have a range of anthocyanin, tannin, and A:T

Winemaking Procedure

- Wines fermented in triplicate
 - 200 L scale, 54 total wines
 - TJ/Boulton Fermentors
- Inoculated with EC 1118 (10⁶ cells/mL)
- Simultaneous ML fermentation (~48 hours post using VP41)
- Nutrient Addition
 - FermaidK (0.25 g/L), DAP (200ppm), GoFerm (0.3g/L)
- No acidity adjustments
 - Water for saignée/water back had 5 g/L tartaric acid
- Chaptalization with 80 Brix sugar solution
- 10 day maceration

Aging

- Wines were collected at day 10 of fermentation
 - Remaining sugars and organic acids were removed (XAD7)
 - Dissolved in same volume model wine (14% alcohol, 5 g/L TA, pH=3.5)
- Aged at 30°C for 4 months
 - Samples collected once a month
 - Cellar aged samples collected 6 months after fermentation
- Analysis of polymeric pigment, anthocyanin, tannin, and total phenolics performed by protein precipitation, HSO₃⁻ bleaching assays and FeCl₃
- HPLC methodologies also done but not shown today

2015 Harvest Data

	Harvest (Pick Date)	Brix at Harvest	рН	TA (g/L)	Berry Weight (g)	Anthocyanin (mg/berry)
Cabernet Sauvigno n	Unripe (DOY 233)	19.2 c	3.41 c	9.29 a	0.82 b	0.71 c
	Ripe (DOY 260)	25.1 b	3.72 b	7.23 b	1.02 a	0.91 a
	Overripe (DOY 289)	27.5 a	3.89 a	6.91 c	0.83 b	0.82 b
Syrah	Unripe (DOY 231)	20.0 c	3.47 c	7.95 a	1.37 a	0.90 c
	Ripe (DOY 252)	24.5 b	3.73 b	8.07 a	1.36 a	1.52 a
	Overripe (DOY 286)	27.9 a	4.01 a	4.72 b	1.12 b	1.14 b

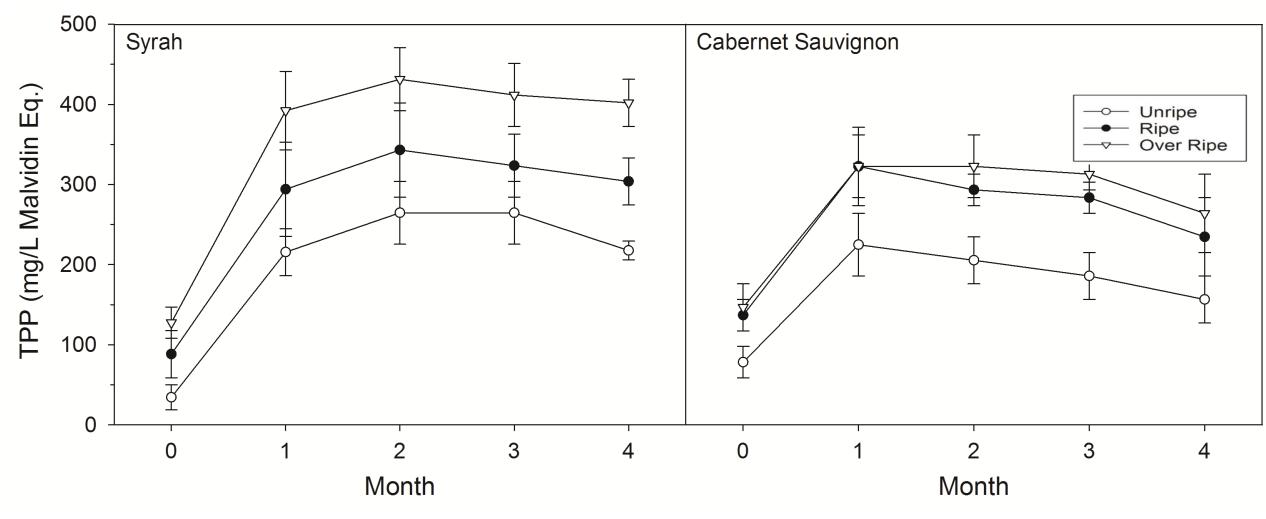
~ 3-4 weeks between pick dates


Cabernet Sauvignon Initial Wine Phenolic Data

Harvest Date	Anthocyanin (mg/L)	Tannin (mg/L CE)	Ratio A:T
Unripe DOY 233	371 a	1072 a	0.36 a
Ripe DOY 260	795 b	886 b	0.93 b
Overripe DOY 289	783 b	892 b	0.86 b
Alcohol Treatment			
Low	641	816 a	0.83
Medium	654	946 a	0.71
High	623	1189 b	0.61

Syrah Initial Wine Data

Harvest Date	Anthocyanin (mg/L)	Tannin (mg/L CE)	Ratio A:T
Unripe DOY 231	458 c	374 ab	1.3 b
Ripe DOY 252	726 b	351 a	2.1 a
Overripe DOY 286	832 a	429 b	2.0 a
Alcohol Treatment			
Low	640	302 b	2.1 a
Medium	700	416 a	1.7 b
High	680	437 a	1.6 b


Anthocyanin Changes Over Time

Independent of alcohol treatment Exponential decay R²: 0.94-0.99

1 month incubator=1 year cellar

Polymeric Pigment Over Time

• 1 month incubator=1 year cellar

Predicting Polymeric Pigment Content (SY)

R² Values for Other Predictors

- Syrah
 - A:T=0.042
 - [Tannin]=0.392
 - [Anthocyanin]=0.735
 - [Tannin] + [Anthocyanin]=0.859
- Cabernet Sauvignon
 - A:T=0.405
 - [Tannin]=0.02
 - [Anthocyanin]=0.670
 - [Tannin] + [Anthocyanin]=0.767

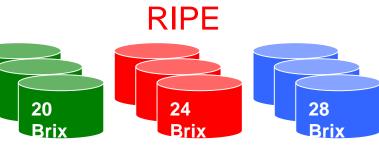
Conclusions

- Initial wine (not necessarily fruit) anthocyanin concentration best single predictor of long-term polymeric pigment
 - Higher initial anthocyanin (and tannin), higher polymeric pigment
 - More stable color and mouth feel modification over time
- Polymeric pigment formation occurs relatively rapidly
 - At equilibrium between formation and sedimentation after 1 month (1 year cellar)

Hang Time Experiment: Merlot Flavor

Harvest 1: Unripe 20.7 ± 0.5 Brix Chaptalize to 24 Brix 5 September 2013 Brix Harvest 2: Ripe Brix 24.0 ± 0.2 Brix Brix 37 Days Harvest 3. Overfi 20 Brix 27.4 ± 0.4 Brix to 24 Brix 2 November 2012

```
Low : Control (~20 Brix)
Medium:
```


High: Chaptalize to 28

Low: Saignée – $+H_2O$ to 20

Medium: Control (~24

High: Chaptalize to 28 Brix Low: Salgnee $+H_2$ to OVERRIPE Medium: Saignée $+H_2$ U_2 U_2 U

High: Control (~28 Briv)

WINEMAKING

- 300 kg/Replicate
- 300 L Stainless Steel Tan
 - Treatment Replicates: n=3
- Yeast (EC-1118)
- 48 hrs. ML (VP41)
- 10 Days Contact Time
 - (26 ± 2°C)

Fruit Data

Harvest	Brix	рН	TA (g/L)	Berry Weight	Color (mg/g FW)	Skin Tannins (mg/g FW)	Seed Tannins (mg/g FW)
UNRIPE	20.7 a	3.57 a	7.83 c	0.98 a	0.65 a	0.60 a	3.68 b
RIPE	23.9 b	3.73 b	5.56 a		0.73 a	0.60 a	3.06 a
dehydea	tion	cŋara b	6.60 b	0.99 a	0.99 b	n effects fr 086 b	3.66 b
Intuitive	Impa	cts: N	lore co	lor and sl	kin tannin	S	
Intuitive Impacts: More color and skin tannins Counter Intuitive Impacts: TA increase, Seed Tannin Increase Drop in yield about 20-25% when ripening to 28 Brix							

Harvest	EtOH % (v/v)	рН	TA (g/L)	RS (g/L)	Dynamic Viscosity (cP)	Density (g/cm³)
UNRIPE	13.86	3.63 a	5.01 b	3.11 a	1.35 c	0.9857 a
RIPE	14.03	3.73 b	4.52 a	2.56 a	1.29 a	0.9860 a
OVERRIP E	13.95	3.73 b	5.15 b	4.11 a	1.32 b	0.9872 b
Ethanol						
	11.59 E: Grea	3.60 It er aVis	4.86 cosity a	nd ^{1.94} a Lower E	1.22 a Density	0.9884 c
					reater Visco 1.33 b	sity, <u>Lower</u> 0.9860 b

	Harvest	Antho S (mg/L)	SPP (A _{520n} m)	LPP (A _{520nm})	Tannin s (mg/L)	Total Iron Reactive Phenolics (mg/L)
	UNRIPE	249 a	0.90 b	0.54 c	564 b	1571 a
	RIPE	469 b	1.11 c	0.31 a	440 a	1521 a
	OVERRIP E	524 c	0.82 a	0.40 b	792 c	2338 b
	Ethanol					
	Low	430	0.87 a	0.32 a	537 a	1655 a
@ 6(Med	410	0.91 a	0.41 b	591 b	1766 b
Tota	High	403	1.06 b	0.52 c	669 c	2008 c

High Ethanol Impacted: Tannins, Total IRP

Sensory Panel Work

- Descriptive Analysis: UC Davis Sherman & Heymann
- Sourness, Bitterness, Astringency, Sweet, Body
- Aromas by aroma and flavor
 - Vegetal, bell pepper, smokey, white pepper, floral, spice, red fruit, plum, dried fruit, oak

SEPARATION BY ETHANOL HIGH, MEDIUM, LOW SEPARATION BY ETHANOL SEPARATION BY ETHANOL SEPARATION BY ETHANOL SEPARATION BY ETHANOL

Ethanol Dominated Sensorial Evaluation

- Wines with similar ethanol were more similar to each other than the wines made from fruit picked at 20, 24 and ~28 Brix
- Low Ethanol: sourness, vegetal, bell pepper and earthy flavors.
- Medium Ethanol: vegetal, earthy and floral aromas.
- High Ethanol: Astringent, Bitter, Hot, Body, Sweet, Alcohol; Aromas & Flavors: Red Fruit, Plum, Oak, Smokey, White Pepper

Explain that one to me again

Henry's Law

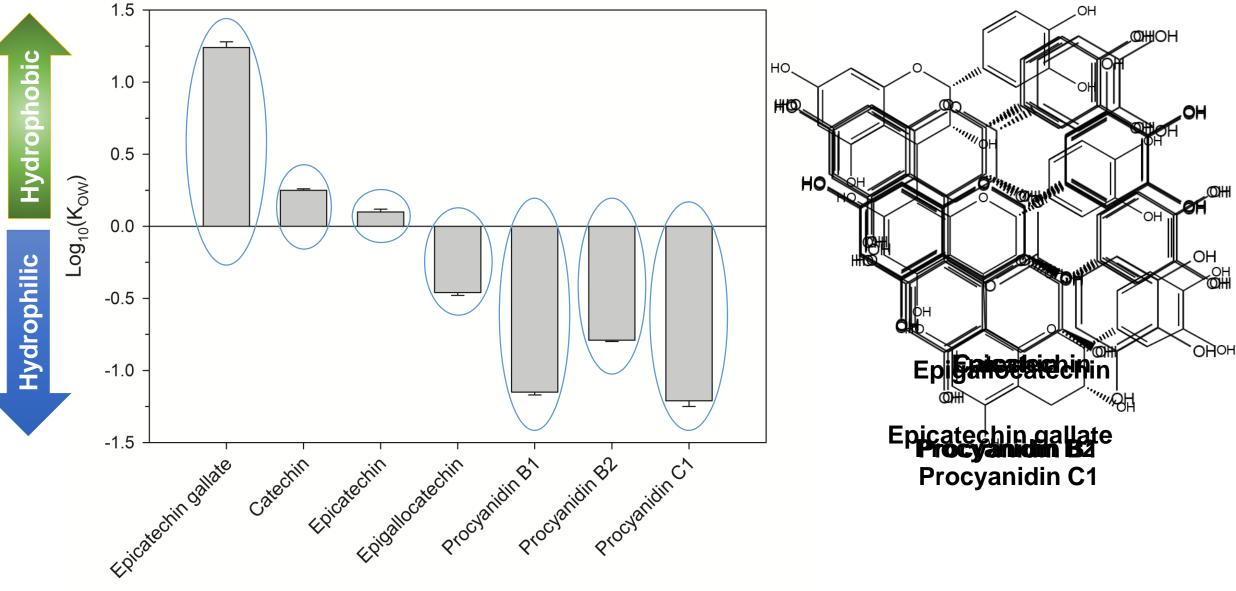
- Tendency of molecule to partition between liquid and vapor phases
 - Henry's law is used in relatively dilute systems (Ethanol vs. aroma compounds)
 - 46- 49 M H_2O or 2-2.8 M Ethanol vs. mM, μ M, nM Aroma Compounds
 - Vapor-liquid equilibrium data are represented in terms of K values
 - K value is vapor liquid distribution ratio
 - **K** = $\frac{y_i}{x_i}$
- Can be really complex of course:
 - Influenced by Chemical Equilibrium
 - Temperature (of course)
 - Ionic Strength (more salt tends decrease solubility of gases)
 - Solvent mixtures (EtOH + Water)!!!
 - Non-ideal solutions (sucrose)

Research Ongoing

- GC-QTOF (untargeted & target) characterization of samples and standards
- Understand which compounds and how matrix of aroma compounds influence what we perceive
- Understand the relationship between the composition of our standards created for panelists and how the relate to wine composition

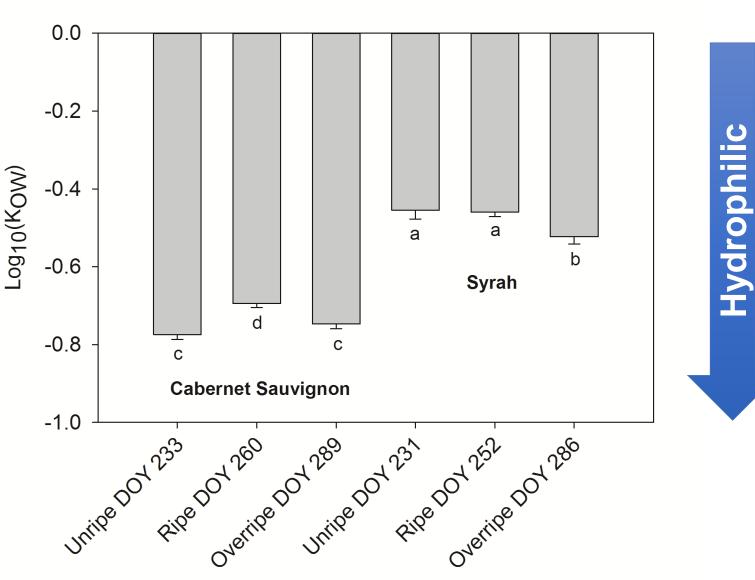
Take Away Messages

- Results suggest aroma/flavor partitioning into H₂O/EtOH is largely driving aroma profile in wine.
- Aroma profile in high ethanol wine is characterized by riper characteristics and greater viscosity (lower density).
- Riper fruit yields more color and tannins
 - More saturated color and more astringency.
- Disclaimer: These results may not apply to other cultivars and regions

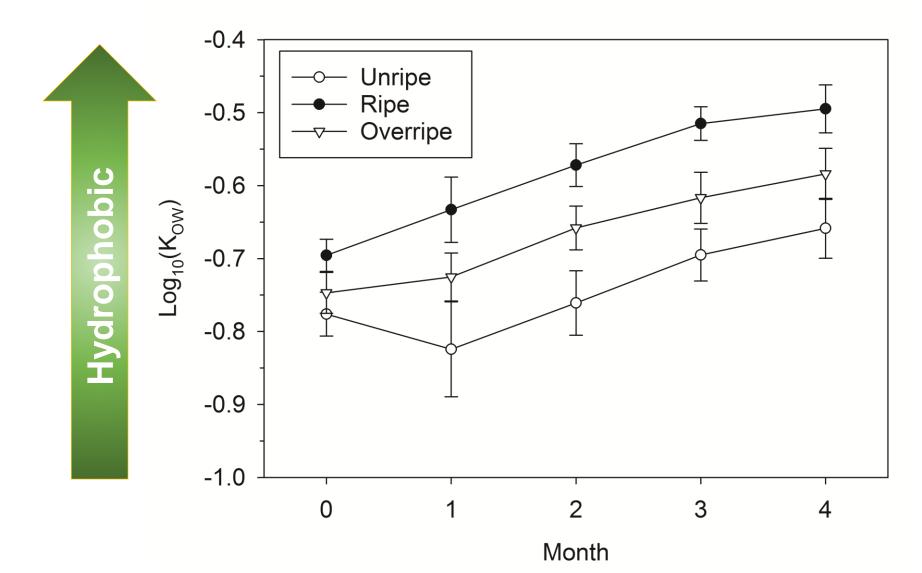

Acknowledgements

- Bree Boskov Oregon Wine Board, Mark Chien, James Osborne OSU
- Funding Source(s):
 - Wine Advisory Committee, the Washington Wine Commission, the Washington Grape and Wine Research Program, and the WSU Agricultural Research Center
- WSU: Caroline Merrell, Richard Larsen, Maria Mireles
- UCD: Hildegarde Heymann
- University of Aukland: Emma Sherman, Dr. David Greenwood, Dr. Silas Villas Boas

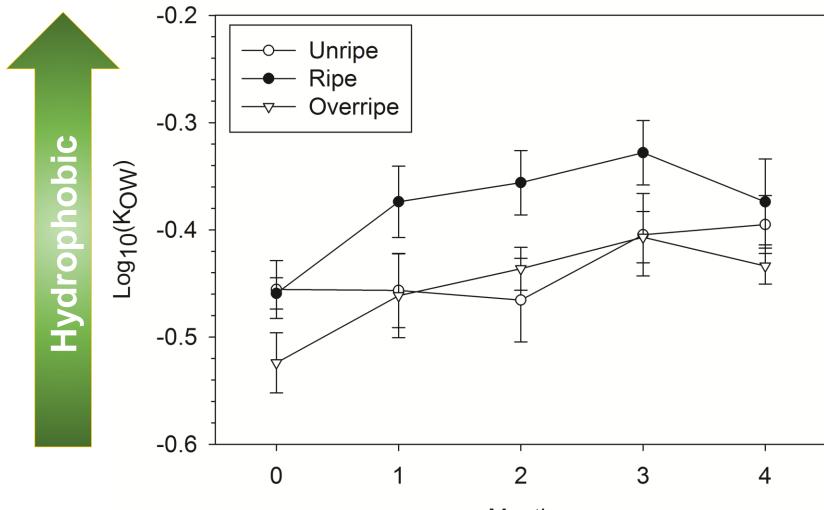
Change Gears!!!! Phenolic Hydrophobicity


- Hydrophobicity is a measure of how much a compound will dissolve/react with water
 - Hydro-water
 - Phobia-fear
- Hydrophobicity of tannins relates to the strength of the proteintannin complex
 - Number of hydrogen bonds vs hydrophobic interactions
- As a tannin polymer gets larger, it also gets:
 - More hydrophilic
 - More efficient at precipitating protein
 - More astringent

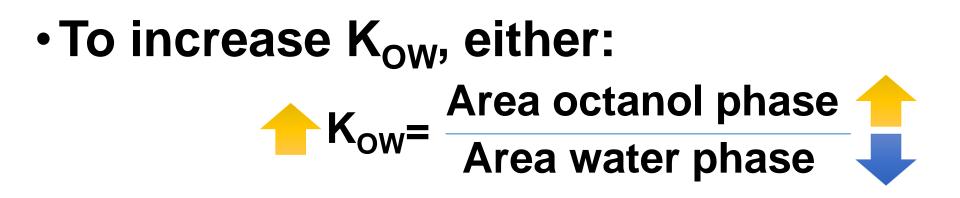
Phenolic Standards



Wine Phenolic Hydrophobicity


- Dependent on varietal and berry maturity
- Independent of wine alcohol content
 - Alcohol content increased a tannin concentration but did not change tannin composition
 - Anthocyanin content also independent of alcohol
 - But increasing anthocyanin would make hydrophobicity decrease

Hydrophobicity Over Time-CS



Hydrophobicity Over Time-SY

Month

What is happening over time?

- Area of octanol phase is not increasing, but area of water phase is decreasing
 - Losing hydrophilic compounds, not gaining hydrophobic ones
 - Tannin polymers NOT getting shorter

Conclusions

- Wine hydrophobicity suggests tannin polymers are relatively small
- Phenolic hydrophobicity is dependent on fruit maturity, not alcohol content
 - Tannin concentration is not changing with maturity but tannin composition/structure is changing
- Phenolic hydrophobicity increases over time
 - Due to structural transformations and losses of anthocyanin
 - Anthocyanin retention 40-60% over 4 months
 - Probably NOT due to shortening of tannin polymers over time