Dynamic Pricing:

The Art \& Science of Pricing to Increase the Economic Health of Your Wine Business

Wednesday February 21, 2018
Steven S. Cuellar, Ph.D.
Professor
Department of Economics
Sonoma State University
Steve.Cuellar@Sonoma.edu

Cost Based Pricing

Cost Based Pricing

Cost Based Pricing

Marketing	$\mathbf{2 . 5} \%$	$\$.60$
Packaging	$\mathbf{3 . 5} \%$	$\$.92$
Winemaking	$\mathbf{9 . 1} \%$	$\$ 2.20$
Grapes	$\mathbf{7 . 5 \%}$	$\$ 1.80$

Sales \& Distribution	$\mathbf{1 2 . 5 \%}$	
Marketing	$\mathbf{2 . 5 \%}$	$\$ 3.00$
Packaging	$\mathbf{3 . 5 \%}$	$\$.60$
Winemaking	$\mathbf{9 . 1 \%}$	$\$.92$
Grapes	$\mathbf{7 . 5 \%}$	$\$ 2.20$

Administration	$\mathbf{2 . 5 \%}$	$\mathbf{\$. 6 0}$
Sales \& Distribution	$\mathbf{1 2 . 5 \%}$	$\mathbf{\$ 3 . 0 0}$
Marketing	$\mathbf{2 . 5} \%$	$\mathbf{\$. 6 0}$
Packaging	$\mathbf{3 . 5} \%$	$\mathbf{\$. 9 2}$
Winemaking	$\mathbf{9 . 1} \%$	$\$ 2.20$
Grapes	$\mathbf{7 . 5} \%$	$\$ 1.80$

Interest	2.5\%	\$.60
Administration	2.5\%	\$.60
Sales \& Distribution	12.5\%	\$3.00
Marketing	2.5\%	\$.60
Packaging	3.5\%	\$.92
Winemaking	9.1\%	\$2.20
Grapes	7.5\%	\$1.80

Taxes, Federal \& Stat	4\%	\$.94
Interest	2.5\%	\$.60
Administration	2.5\%	\$.60
Sales \& Distribution	12.5\%	\$3.00
Marketing	2.5\%	\$.60
Packaging	3.5\%	\$.92
Winemaking	9.1\%	\$2.20
Grapes	7.5\%	\$1.80

Cost Based Pricing

Net Winery Profit	5.6\%	\$1.35
Texes, Federal \& State	4\%	\$.94
Interest	2.5\%	\$.60
Administration	2.5\%	\$.60
Sales \& Distribution	12.5\%	\$3.00
Marketing	2.5\%	\$.60
Packaging	3.5\%	\$.92
Winemaking	9.1\%	\$2.20
Grapes	7.5\%	\$1.80

Whole Sale Markup	19\%	\$4.56
Net Winery Profit	5.6\%	\$1.35
Taxes, Federal \& State	4\%	5.94
Interest	2.5\%	\$.60
Administration	2.5\%	\$,60
Sales \& Distribution	12.5\%	\$3.00
Marketing	2.5\%	\$.60
Packaging	3.5\%	\$.92
Winemaking	9.1\%	\$2.20
Grapes	7.5\%	\$1.80

Cost Based Pricing

Value Based Pricing

Move from what it costs to what it's worth

What are consumers willing to pay for your wine?
Value -Determined by Consumers based or Price.

- A good wine at $\$ 10$ is a value.
- That same wine at $\$ 50$ may not be.

Sales -Determined by Consumers based or Price.

- Whether I buy or not depends on value relative to price.
- How much buy depends on value relative

```
price.
```

Revenue -Determined by Consumers based or Price.

- Selling a lot of wine at a deep discount may result in low revenue.
- Selling very little wine at a high price may also result in low revenue.

When does changing price either an increase or decrease revenue?

Price -Is determined boonsumers.
Where in the consumers' purchasing decision is cost? Nowhere!
Price is determined by consumers.
How do we find the maximum price consumers are willing to pay?
Don't ask consumers what they say they are willing to pay!
Analyze what they actually do.
Start by analyzing consumer behavior.

Price Optimization -Finding the maxaimum price consumers are willing to pay.

Price Optimization -Finding the maxaimum price consumers are willing to pay.
Non-Optimum Price(Too Low)
Results in losses of two types:

Price Optimization -Finding the maxaimum price consumers are willing to pay.

Non-Optimum Price(Too High)

Results in:

Price Optimization -Finding the maxaimum price consumers are willing to pay.
Can we put theory to practice?

Theory of Consumer Behavior

Case Study

We were given data on a particular item (SKU) and asked to evaluate price for a specific month. Price Optimization

Case Study

Price Optimization

We were given data on a particular item (SKU) and asked to evaluate price for a specific month. Based on our analysis, the optimal price for that month should be $\$ 10.60$ per bottle.

Theory of Consumer Behavior

The demand for wine in the USA

Steven S. Cuellar ${ }^{\text {a }}$ and Ryan Huffman ${ }^{\text {b }}$

The demand for wine is gencrally estimated on an aggregate level as a single commodity. However, as recent history shows us, the demand for wine not only varies considerably by varietal, but also by price point within each varietal. As a result, although estimates of the demand for wine may be beneficial to the wine industry as a whole, they provide little beneefit to individ ual wine pro-
ducers. Using scan data of purchases from US retail chain stores, this paper uses store keeping unit ducers. Using scan data of purchases from US retail chain stores, this paper uses store keeping unit
(sku) level data to overome the limitations of prior research on the demand for wine by providing estimates for the demand for wine by varictal and price point. We also provide estimates of own price effects, income effects as well as cross price effects by color, varietal and price point. Problems of endogeneity inherent in demand estimation are corrected by utilizing a novel instrumental variable technique using grape prices as the instrument. (JEL Classification: C23, D12)

Introduction

The purpose of this paper is to investigate the demand for wine and provide insight into he behavior of U.S. wine consumers. We use a unique data set consisting of pooled cross sectional data on the price paid and number of cases sold of wine at the store keeping unit (sku) level. The data set allows us to disaggregate the demand for wine by color, varietal (sku) level. The data set allows us to disaggregate the demand for wine by color, varietal
and price segment. We use a fixed effects model and correct for endogeneity by using an and price segment. We use a fixed effects model and correct for endogeneity by using an
obvious yet novel instrument, grape prices, to identify the demand for wine. In addition to providing own price and income elasticities by color, varietal and price segment, the paper also provides empirical estimates of cross price elasticities by color, varietal and price segment.

The authors would like to thank an anonymous referee for critical comments that helped improving this paer. We are also grateful for helpful comments from participants at Sonoma State University's Department of Economics Seminar Series. We would also like to thank Sonoma State University's Wine Business Program for funding this research.
Depa (707) 664-2305, emails, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA 94928, Rescarch Economist, Sonoma Research Associates, Glen Ellen, CA 95442, Tel. (707) 320-9153, email: huffman.ryan @gmail.com

The American Association of Wine Economists, 2008

Steven S. Cuellar
Department of Economics, Sonoma State University, Rohnert Park, California, USA

Tim Colgan

Foster's Wine Estate, Napa, California, USA Heather Hunnicutt
Wine Business Program, Sonoma State University, Rohnert Park, California, USA, and

Gabriel Ransom

Sonoma Research Associates, Glen Ellen, California, USA
varietal and price point. Also, these wines are found to be normal good as defined by economic theory and the results generally hold across color, varietal and price segnent. There was a greater
willingness of red wine drinkers to switch to white wines than white wine drinkers to switch to red wines.
Practical implications - No statistically significant cross price effects were found
Originalitylvalue - This paper provides an important contribution to the current literature by Originality/value - This paper provides an important contribution to the current literature by
disaggregating the demand for wine by color, major varietal and price segment to analyze cross price ffects.
Keywords Wines, United States of America, Demand, Consumer behaviour
Paper type Research paper

Introduction

The purpose of this paper is to investigate the demand for wine and provide insight into the behavior of US wine consumers. In this paper, we utilize the instrumental variable method of Cuellar and Huffman (2008) and take a more detailed view of US paid and number of cases sold of wine at the store keeping unit (SKU) level. The data set allows us to disaggregate the demand for wine by color varietal and price segment In addition to providing own price and income elasticities by color, varietal and price segment, the paper also provides empirical estimates of cross price elasticities by color, varietal and price segment.

The authors would like to thank participants at Sonoma State University's Department of Economics Seminar Series for helpful comments. They would
University's Wine Business Program for funding this research.

Theory of Consumer Behavior

Consumers' willingness to pay is often measured using the price elasticity of demand.
$\varepsilon_{P}=\frac{\% \Delta Q^{D}}{\% \Delta P} \quad$ Tells us how responsive or sensitive consumers are to a price change.
Also tells us whether revenue increases or decreases in response to a price change $\&$ by how much it will change. If consumers are very sensitive to price changes, then a price increase will decrease revenue.

If consumers are not very sensitive to price changes, then a price increase will increase revenue.

The optimal price is inversely proportional to the price elasticity of demand.
$P=\frac{M C}{\left(1-\frac{1}{\left|\varepsilon_{P}\right|}\right)} \quad P=\frac{M C}{\left(1-\frac{1}{1.1}\right)} \quad P=\frac{M C}{(1-.90909091)} \quad P=\frac{M C}{(.09090909)} \quad P=11 M C$
Price Elasticity
(ε) \(\begin{gathered}MC=\$10

Price\end{gathered} \quad $$
\begin{gathered}\text { Price }\end{gathered}
$$ \quad\)| Percentage |
| :---: |
| 1.1 |

Theory of Consumer Behavior

Consumers' willingness to pay is often measured using the price elasticity of demand.
$\varepsilon_{P}=\frac{\% \Delta Q^{D}}{\% \Delta P}$
Tells us how responsive or sensitive consumers are to a price change.
Also tells us whether revenue increases or decreases in response to a price change $\&$ by how much it will change. If consumers are very sensitive to price changes, then a price increase will decrease revenue.

If consumers are not very sensitive to price changes, then a price increase will increase revenue.

The optimal price is inversely proportional to the price elasticity of demand.
$P=\frac{M C}{\left(1-\frac{1}{\left|\varepsilon_{P}\right|}\right)}$

Price Elasticity (ε)	MC=\$10 Price	Price Mark-Up	Percentage Mark-Up
1.1	$\$ 110.00$	$11 X$	1000%
1.5	$\$ 30.00$	$3 X$	200%

Theory of Consumer Behavior

Consumers' willingness to pay is often measured using the price elasticity of demand.
$\varepsilon_{P}=\frac{\% \Delta Q^{D}}{\% \Delta P}$
Tells us how responsive or sensitive consumers are to a price change.
Also tells us whether revenue increases or decreases in response to a price change $\&$ by how much it will change. If consumers are very sensitive to price changes, then a price increase will decrease revenue.

If consumers are not very sensitive to price changes, then a price increase will increase revenue.

The optimal price is inversely proportional to the price elasticity of demand.
$P=\frac{M C}{\left(1-\frac{1}{\left|\varepsilon_{P}\right|}\right)}$

Price Elasticity $(\boldsymbol{\varepsilon})$	MC=\$10 Price	Price Mark-Up	Percentage Mark-Up
1.1	$\$ 110.00$	11 X	1000%
1.5	$\$ 30.00$	$3 X$	200%
2	$\$ 20.00$	2	100%

Theory of Consumer Behavior

Consumers' willingness to pay is often measured using the price elasticity of demand.
$\varepsilon_{P}=\frac{\% \Delta Q^{D}}{\% \Delta P}$
Tells us how responsive or sensitive consumers are to a price change.
Also tells us whether revenue increases or decreases in response to a price change $\&$ by how much it will change. If consumers are very sensitive to price changes, then a price increase will decrease revenue.

If consumers are not very sensitive to price changes, then a price increase will increase revenue.

The optimal price is inversely proportional to the price elasticity of demand.
$P=\frac{M C}{\left(1-\frac{1}{\left|\varepsilon_{P}\right|}\right)}$

Price Elasticity $(\boldsymbol{\varepsilon})$	MC=\$10 Price	Price Mark-Up	Percentage Mark-Up
1.1	$\$ 110.00$	11 X	1000%
1.5	$\$ 30.00$	$3 X$	200%
$\mathbf{2}$	$\$ 20.00$	2	100%
$\mathbf{3}$	$\$ 15.00$	1.5	50%

Theory of Consumer Behavior

Consumers' willingness to pay is often measured using the price elasticity of demand.
$\varepsilon_{P}=\frac{\% \Delta Q^{D}}{\% \Delta P}$
Tells us how responsive or sensitive consumers are to a price change.
Also tells us whether revenue increases or decreases in response to a price change $\&$ by how much it will change. If consumers are very sensitive to price changes, then a price increase will decrease revenue.
If consumers are not very sensitive to price changes, then a price increase will increase revenue.

The optimal price is inversely proportional to the price elasticity of demand.
$P=\frac{M C}{\left(1-\frac{1}{\left|\varepsilon_{P}\right|}\right)}$

Price Elasticity (ε)	MC=\$10 Price	Price Mark-Up	Percentage Mark-Up
1.1	$\$ 110.00$	$11 X$	1000%
1.5	$\$ 30.00$	$3 X$	200%
2	$\$ 20.00$	2	100%
3	$\$ 15.00$	1.5	50%
5	$\$ 12.50$	1.25	25%

Theory of Consumer Behavior

Consumers' willingness to pay is often measured using the price elasticity of demand.
$\varepsilon_{P}=\frac{\% \Delta Q^{D}}{\% \Delta P}$
Tells us how responsive or sensitive consumers are to a price change.
Also tells us whether revenue increases or decreases in response to a price change $\&$ by how much it will change. If consumers are very sensitive to price changes, then a price increase will decrease revenue.
If consumers are not very sensitive to price changes, then a price increase will increase revenue.

The optimal price is inversely proportional to the price elasticity of demand.
$P=\frac{M C}{\left(1-\frac{1}{\left|\varepsilon_{P}\right|}\right)}$

Price Elasticity $(\boldsymbol{\varepsilon})$	MC=\$10 Price	Price Mark-Up	Percentage Mark-Up
1.1	$\$ 110.00$	11 X	1000%
1.5	$\$ 30.00$	$3 X$	200%
2	$\$ 20.00$	2	100%
3	$\$ 15.00$	1.5	50%
$\mathbf{5}$	$\$ 12.50$	1.25	25%
10	$\$ 11.11$	1.11	11%

Theory of Consumer Behavior

The optimal pricing formula also allows us to understand how the price responds to a change in costs.
Using the optimal price formula, $P=\frac{M C}{\left(1+\frac{1}{\varepsilon}\right)} \quad$ Rearranging we get $P=\frac{\varepsilon}{\varepsilon+1} M C$
Which shows that price is a multiple of marginal cost.
This helps us understand what happens to price when marginal cost changes.
Suppose that $\varepsilon=-2$
$P=\frac{-2}{-2+1} M C=2 M C \quad$ If marginal cost increases by $\$ 1$, then price will increase by $\$ 2$.
Suppose that $\varepsilon=-3$
$P=\frac{-3}{-3+1} M C=1.5 \mathrm{MC} \quad$ If marginal cost increases by $\$ 1$, then price will increase by $\$ 1.50$.
In this case, consumers are more price sensitive, thus firms are less able to pass along cost increases to consumers. How price responds to a change in costs is called the pass through rate.

This helps us understand how changes in:

- Input prices
- Taxes
- Exchange Rates
affect prices.

Dynamic Pricing

Once we understand how to price optimally, we can now engage in dynamic pricing.
What is dynamic pricing?
Charging different market segments, different prices based on their willingness to pay.

Dynamic Pricing

Dynamic Pricing
Once we understand how to price optimally, we can now engage in dynamic pricing
What may be the optimal price for the average consumer, is non-optimal for different market segments

Dynamic Pricing
Once we understand how to price optimally, we can now engage in dynamic pricing
What may be the optimal price for the average consumer, is non-optimal for different market segments

Dynamic Pricing
Once we understand how to price optimally, we can now engage in dynamic pricing

The Firm Should Either Optimize Price Across Markets

Market A

Market B

Dynamic Pricing
Once we understand how to price optimally, we can now engage in dynamic pricing

Or The Firm Should Optimize Quantity Across Markets

Market A

Dynamic Pricing
Useful reference on dynamic pricing

Dynamic Pricing

Retail Channel Price Discrimination (Cuellar and Brunamonte 2013)

The paper examines the three main retail channels:
A uniform price may be inefficient across all three channels if consumers differ in their willingness to pay.

Drug Stores

Grocery Stores
Liquor Stores
If $\left|\varepsilon_{D}\right|>\left|\varepsilon_{G}\right|>\left|\varepsilon_{L}\right|$ Then there may be an opportunity to engage in dynamic pricing. Specifically we should see $P_{D}<P_{G}<P_{L}$

Dynamic Pricing

Retail Channel Price Discrimination (Cuellar and Brunamonte 2013)

The paper examines the three main retail channels:
A uniform price may be inefficient across all three channels if consumers differ in their willingness to pay.

Drug Stores

Grocery Stores
Liquor Stores
If $\left|\varepsilon_{D}\right|>\left|\varepsilon_{G}\right|>\left|\varepsilon_{L}\right|$ Then there may be an opportunity to engage in dynamic pricing. Specifically we should see $P_{D}<P_{G}<P_{L}$

Measuring the Effect of Promotion

Once we have moved to value based pricing, we can also accurately measure the effect of promotion.

Journal of Strate sic Marketing

[${ }^{\text {Routledge }}$

Measuring the effect of promotion in non-controlled settings a decompositional approach
Steven Cuellar${ }^{\text {² }}$, Michael Noland ${ }^{b}$ and Scott Kirkwood
${ }^{a}$ Economics, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA 94928 , USA

(Received 26 May 2010: final version received 2 November 2010)
This paper provides a market basce method that allows firms to obtain an accurate
measure of the effects of promotion in non controlled settings. Determining the effec measure of be e efects of promotion in non- contronted settings. Determining the effec
of promotion is often confounded by differcnces in price between promoted of promotion is oficn confounded by differcnces in price betwecn promoted and non
promoted sales as well as heterogeneity among consumers who buy promoted and non promoted products. This paper provides a market based method that overcomes bol
these obstaces We begin first by providing a brief praphical analysis outlining problems associated with accurately measuring the effects of promotion. We address the particular issue of price and how to decompose the effects of price from promotion. Next, we address the issue of heterogeneity of consumers, allowing those who buy on
promotion to differ from those who buy off promotion. Finally we introduce a formal methodology to isolate the effects of promotion.
Keywords: promotion effects; retum on investment (ROD); decomposition

Introduction
Estimating the return on investment (ROI) from promotion is a critical part of effective marketing. An accurate measure of ROI from promotion is essential not only to decide whether or not to promote but also to the decisions of how much to promote, when to promote and what type of promotion should be undertaken. Ideally, a ROI for promotion captures the pure effect of promotion absent any other influences. Unfortunately, the reality of measuring the effects of promotion is less than ideal. For example, one issue
confounding the effect of promotion is the fact that a price change often is made in conjunction with a promotional effort. As a result, it becomes difficult to disentangle any crease in unit sales due to the promotion from increases in sales due to, for example, a ower unit price. Another obstacle to obtaining an accurate measure of ROI of promotion is he assumption that those who buy on sale/promotion are identical to those who buy off ale/promotion. If there is heterogeneity between these two groups, then the estimated lifi from advertising and promotion may be inaccurate.
The purpose of this article is to provide a market based method that allows firms to obtain an accurate measure of the effects of promotion in non-controlled settings. We begin first by providing a brief graphical analysis of the problems confounding an accurate measurement of the effects of promotion. We address the particular issue of price and how to decompose the effects of price from promotion. Next, we address the issue of heterogencity of

Corresponding author. Email: steve.cuellare sonoma e ed

No6S Sax prinenssN 146604888 centre

Journal of Strategic Marketing 2011

Steven S. Cuellar, Ph.D.
Sonoma State University and Sonoma Research Associates
Glen Ellen, CA. USA
Steven.Cuellar@Sonoma-Research.com
(707) 935-1210

Michael Noland Sonoma Research Associates Glen Ellen, CA. USA Mike.Nolan@Sonoma-Research.com (707) 935-1210

Scott Kirkwood Sonoma Research Associates Glen Ellen, CA USA
Scott.Kirkwood@Sonoma-Research.com (707) 935-1210

Measuring Promotion

What is the effect of promotion?
How do we measure promotion?

In the simplest case, measuring the effect of promotion would be easy
Promotional Lift is measured as the horizontal distance (i.e. shift) between the promoted and non-promoted demand curves.

Using regression analysis:

This works as long as:

1. Promoted price is the same as the nonpromoted price.
2. Promoted and nonpromoted consumers are homogeneous.

$$
Q^{D}=\beta_{0}+\beta_{1} \text { Promotion }+u_{i}
$$

$$
\text { Where Promotion }=\left\{\begin{array}{l}
1 \text { if on promotion } \\
0 \text { if not on promotion }
\end{array}\right.
$$

$$
\beta_{1}=\frac{\Delta Q^{D}}{\Delta \text { Promotion }}=\text { Promotional Lift }
$$

The increase in unit sales = Promotional Lift

Measuring the Effect of Promotion in Non-Controlled Settings: A Decompositional Approach

What Happens When Promotion is Combined with a Price Reduction?

The Observed Total Increase in Unit Sales (i.e., Lift) Confounds the Effect of the Price Reduction with the Promotional Effect Resulting in an Over Estimate of the Effect of Promotion.

Measuring the Effect of Promotion in Non-Controlled Settings: A Decompositional Approach

Measuring Promotion when Combined with a Price Reduction

Decomposing the Effect of Price and Promotion

Measuring the Effect of Promotion in Non-Controlled Settings: A Decompositional Approach

Decomposing the Effect of Price and Promotion

Anonymous Cabernet Sauvignon		
Summary Statistics		
	Mean	Mean
	Unit	Weekly
	Price	Sales
Non-Promoted	$\$ 9.75$	1,429
Promoted	$\$ 8.68$	2,147
Feature	$\$ 8.18$	508
Display	$\$ 9.04$	545
Feature \& Display	$\$ 8.18$	217
Temporary Price Reduction	$\$ 8.87$	877

Measuring the Effect of Promotion in Non-Controlled Settings: A Decompositional Approach

Decomposing the Effect of Price and Promotion

True Effect of Promotion

Measuring the Effect of Promotion in Non-Controlled Settings: A Decompositional Approach

Heterogeneity

Measuring the Effect of Promotion in Non-Controlled Settings: A Decompositional Approach

Heterogeneity

What if consumers that buy on promotion are different than that those that buy off promotion?

Heterogeneity

With Heterogeneous Consumers, Promotion will have Different Effects at Different Prices

Heterogeneity, Price Reductions \& The Decomposition

SONOMA

Decomposition I

At a Relatively High Non-Promoted Price of \$9 and Promoted Price of \$8

| | Unit | | |
| ---: | ---: | :---: | :---: | :---: |
| Differences | Change | \%Change | \%Decomposition |
| Total Difference in Sales | 1,156 | 53.53% | 100.00% |
| Difference in Sales Due to Price: $\beta_{1}{ }^{N}\left(P^{P}-P^{N}\right)$ | 976 | 45.22% | 84.47% |
| Difference in Sales Due to Promotion: $\left(\beta_{0}{ }^{P}-\beta_{0}{ }^{N}\right)+P^{P}\left(\beta_{1}{ }^{P}-\beta_{1}{ }^{N}\right)$ | 180 | 8.32% | 15.53% |

Promotional Lift

Decomposition II

At a Relatively Low Non-Promoted Price of \$8 and Promoted Price of \$7

	Differences	Change	\%Change	\%Decomposition
Total Difference in Sales	1,910	60.91%	100.00%	
Difference in Sales Due to Price: $\beta_{1}{ }^{N}\left(P^{P}-P^{N}\right)$	976	31.14%	51.12%	
Difference in Sales Due to Promotion: $\left(\beta_{0}{ }^{P}-\beta_{0}{ }^{N}\right)+P^{P}\left(\beta_{1}{ }^{P}-\beta_{1}{ }^{N}\right)$	934	29.77%	48.88%	

Thank You

Steven S. Cuellar, Ph.D.
Professor
Department of Economics
Sonoma State University
1801 East Cotati Avenue
Rohnert Park, CA. 94928
(707) 664-2305
Steve.Cuellar@Sonoma.edu

