Root-zone and vineyard floor effect on Cabernet Sauvignon vine performance.

Cain Hickey

Tony Wolf, Tremain Hatch, Brycen Hill

February 20, 2018 Oregon Wine Symposium

Vine size (vigor, growth)

- Often "excessive" in humid climates
 - VA, NC, GA, PA, NY, etc... OR????
- Likely due to:
 - Low evapotransitive demand of atmosphere (high humidity)
 - Supra-optimal availability of soil water
 - Variable seasonal rainfall
 - Nutrients are often not limiting
 - Grower-applied amendments
 - Inherent soil organic matter

Canopy microclimate differences as a function of canopy density.

Microclimate characteristic	Interior region of a SPARSE canopy	Interior region of a DENSE canopy
Sunlight	Most leaves and fruit receive some direct sunlight at some point during the day	Most leaves and fruit are in the shade for the day
Temperature	Fruit and leaves are warmed by sunlight and may be cooler than air temperature at night	Most leaves and fruit are at approximately ambient temperature, both day and night
Humidity	Leaves and fruit experience ambient humidity values	Humidity can build up slightly within the canopy
Wind speed	Leaves and fruit are exposed to ambient wind speed values	Wind speeds are reduced within the canopy
Evaporative potential	Evaporation rates are similar to ambient values	Evaporation rates are reduced within the canopy

Smart and Robinson (1991)

Why do we care about excessive vine growth?

- It may limit crop quality
 - Disease
 - Quality
 - Quantity?
 - maybe if vine becomes overly vegetative and sunlight is limited
- Because of the above, regulating vegetative growth is important

Why does Oregon care about reducing vine vigor?

- Reduce the need for remedial canopy management measures?
 - Hedging, lateral and leaf removal
 - Labor-related concern
- Reduced vigor increases fruit quality?
 - If so, likely related to microclimate of vineyard:
 - Reduced vigor = smaller canopy = more light penetration (really a light effect)
 - Reduced vigor = smaller berries = greater skin: volume ratio (really concentration effect)

Remedial vine size management

- Canopy management
 - Leaf removal (1-2 x / season)
 - Hedging (3-4 x / season)
 - Lateral shoot removal (2-3 x / season)

All of these take time and cost money

Proactive vine size management

- Site selection
- Cultivar selection
- Rootstock selection
- Vine spacing?
- Trellis system
- Pruning methods (cane vs. spur)
- Under-trellis cover cropping
- Vine spacing?
- Root restriction

All of these can cost money, but may limit time spent on remedial measures in the long run

Why use cover crops in vineyards?

- Row middles:
 - accommodate vineyard equipment
 - Maintain soil place (i.e. limit erosion) and structure (i.e. limit compaction)
- Under-trellis:
 - *further* reduce erosion on highly (> 20 %) sloped sites
 - improve soil "health" (organic matter, improve beneficial microbes)
 - reduce vine vigor through competition
 - improve fruit composition?

Why use rootstocks in (vinifera) vineyards?

- Tolerate soil-borne insect pests
 - phylloxera, nematodes
- Tolerate salinity, acidity, alkalinity
- Tolerate drought
- Confer scion vigor

Trait ratings of rootstocks (greater = higher number)				
Rootstock	Scion vigor	Drought tol.	Phylloxera tol.	
C-3309	3	2	4	
101-14	2-3	1	4	
420 A	1-2	2	4	
Riparia gloire	1-2	1	5	

Adapted from Wolf (2008)

Two parts: 1. <u>cover crop and rootstock</u> study (6 years) 2. <u>root restriction</u> bag study (2 years)

Part 1: Can vine size be regulated with cover crops and rootstocks, and will this change fruit composition?

- Cabernet Sauvignon (2006); clone 337
- low, bilateral cordon trained to VSP
- 6 years (most responses)
- UTGC:
 - Herbicide strip (HTS)
 - Creeping red fescue under-trellis (CC)
 - Established 2008
- Rootstocks:
 - 101-14
 - 420-A
 - Riparia gloire

Vine vigor (shoot growth rate)

Shoot growth rate (cm/day) May – June, 2010			
CC	1.81		
HTS	2.44		

Vine size

(pruning weight)

Characteristics of the ideal canopy (Smart and Robinson 1991).			
Canopy characteristic	Optimal value		
Cane pruning weights	0.3 – 0.6 kg / m of canopy		

^{© 2016} American Society for Enology and Viticulture. AJEV 67:281-295.

Fruit-zone microclimate at veraison (pre-lateral / leaf removal)

Treatment	CEL ^a	CEFA ^a
UTGC ^{b,c}		
CC	0.43 b	0.37 a
HTS	0.65 a	0.26 b
Rootstock		
101-14	0.58 a	0.28 a
420 - A	0.56 a	0.32 a
Riparia	0.48 a	0.34 a

Tissue nutrient concentration, 2011

Adapted from: © 2016 American Society for Enology and Viticulture. AJEV 67:281-295.

	BLOOM LEAF	PETIOLES (%)	VERAISON LEA	F PETIOLES (%)	VERAISON LEA	AF BLADES (%)
	<mark>Nitrogen</mark>	Potassium	<mark>Nitrogen</mark>	Potassium	Nitrogen	Potassium
UTGC						
CC	<mark>0.70 b</mark>	2.25	0.37	5.40	<mark>2.12 b</mark>	1.22
HTS	0.81 a	1.99	0.37	5.50	2.31 a	1.11
Rootstock						
101-14	0.73	2.81 a	0.38	6.41 a	2.20	1.34 a
420-A	0.76	<mark>1.18 b</mark>	0.36	<mark>4.49 c</mark>	2.17	<mark>1.02 b</mark>
Riparia	0.77	2.37 a	0.37	5.44 b	2.28	1.12 ab

Midday stem water potential

(vine hydration status)

Crop yield and some components

Treatment	Crop yield (t/acre)	Cluster weight (g)
UTGC ^a		
CC	3.73 b	139 b
HTS	4.29 a	172 a
Rootstock		
101-14	3.80 b	141 b
420-A	3.71 b	155 ab
Riparia	4.53 a	170 a

© 2016 American Society for Enology and Viticulture. AJEV 67:281-295.

^{© 2016} American Society for Enology and Viticulture. AJEV 67:281-295.

Fruit composition

^{© 2016} American Society for Enology and Viticulture. AJEV 67:281-295.

© 2016 American Society for Enology and Viticulture. AJEV 67:281-295.

Table 5Effects of UTGC, rootstock, and UTGC/rootstockon mean estimated skin (2009 to 2011) and berry (2013)phenolics and anthocyanins.					
	2009 t	o 2011	2013		
Treatment	Total phenolics (A ₂₈₀ , AU ^a)	Antho- cyanins (A ₅₂₀ , AU ^a)	Total phenolics (A ₂₈₀ , AU ^a)	Antho- cyanins (mg/g berry)	
UTGC ^{b,c}					
CC	45.15 a	37.59 a	82.50 a	0.84 a	
HTS	42.00 a	36.45 a	83.38 a	0.83 a	
Rootstock °					
101-14	44.18 a	38.31 a	85.38 a	0.82 ab	
420 - A	41.74 a	35.65 a	73. 1 5 b	0.76 b	
Riparia	44.80 a	37.09 a	90.28 a	0.93 a	

Part 1: Discussion / take home

- Under-trellis cover crops appear to "compete" with vines for nitrogen more so than water.
 - Root displacement in soil profile? (Klodd et al. 2016)
- 420-A may limit wine pH (indirect K+ effects) but also may limit color
 - "berlandieri-based" rootstocks exclude K+ (Wolpert et al. 2005)
- Under-trellis cover crops regulated vine growth more so than rootstock choice.
- Fruit composition was marginally affected by treatments
- *Riparia* increased crop yield (berry weight) while CC reduced crop yield (berry # / cluster)

Part 2: root bag restriction effects on vine size, crop yield, and fruit composition

Part 2: root restriction effects on vine size, crop yield, and fruit composition

- Cabernet Sauvignon; clone 337; low, bilateral cordon trained to VSP
- 2 years
- Two "side studies":
 - Root restriction (0.015 m³)
 - No root manipulation (NRM)
 - 3 different root restriction volumes
 - 0.026, 0.035, and 0.058 m^3
 - No root manipulation (NRM)

0.015 m³ volume root restriction vs. NRM

Shoot growth in 2010

0.015 m³ volume root restriction vs. NRM

Pruning weight averaged over 2010 and 2011.

Smart and Robinson (1991)

Root restriction (m3 vol.) had many of these

Characteristics of the ideal canopy (Smart and Robinson 1991).

Canopy characteristic	Optimal value
Shoot length	15-20 nodes
Lateral shoot development	Ideally none
Growing shoot tip presence	Ideally none
Cane pruning weights	0.3 – 0.6 kg / foot of canopy

0.015 m³ volume root restriction vs. NRM

Treatment	Crop yield (t/acre)
Root restriction ^a	
0.015 m^3	2.56 b
NRM	3.98 a

• Crop yield reduction by 0.015 m³

- *Reduced* berry weight
- *Reduced* berry number per cluster
- *Reduced* cluster weight
- Similar cluster number per vine

36% reduction in crop yield due to 0.015 m³

0.015 m³ volume root restriction vs. NRM

	2010			
	Brix	рН	ТА	
0.015 m ³	24.5 b	3.41	5.35	
NRM	25.5 a 3.44 5.43			
	2011			
		2011		
	Brix	2011 рН	TA	
0.015 m ³	Brix 20.9	2011 pH 3.37 b	TA 5.13 b	

- Immediately thought that 0.015 m³ was maybe "too much" growth regulation...
- ...let's try larger volumes...
- 0.026 m³
- 0.035 m³
- 0.058 m³

• Pruning weight

- 0.026 and 0.035 m³
 - "in the zone"

Treatment	Crop yield (t/acre)
Root restriction ^a	
0.026 m^3	5.23
0.035 m^3	5.96
0.058 m^3	5.18
NRM	5.50

Table 29. Treatment effects on soluble solids (°Brix), pH, and titratable acidity (g/L) in 2015-2016.

	Soluble So	lids (°Brix)	рН		Titratable Acidity (g/L)	
Treatment ^{ab}	2015	2016	2015	2016	2015	2016
0.026 m ³	23.10 a	22.15 a	3.27 b	3.61 a	6.88 b	5.35 b
0.035 m ³	22.80 a	21.73 a	3.26 b	3.59 a	7.67 a	5.57 b
0.058 m ³	23.08 a	22.28 a	3.29 b	3.61 a	7.65 a	5.91 ab
NRM	22.18 a	20.35 b	3.34 a	3.56 a	8.12 a	6.82 a
Significance ^c	NS	0.0010	0.0041	NS	0.0025	0.0138

	Antho concentrat	cyanin ion (mg/g)	Absorbance at 280 nm		
Treatment ^{ab}	2015	2016	2015	2016	
0.026 m ³	1.25 a	1.30 a	1.60 a	1.68 a	
0.035 m ³	1.10 ab	1.04 ab	1.46 a	1.50 ab	
0.058 m ³	1.05 ab	1.04 ab	1.45 a	1.56 a	
NRM	0.96 b	0.84 b	1.32 a	1.24 b	
Significance ^c	0.0155	0.0045	NS	0.0106	

DeAnna D'Atillio

Canopy management labor savings of 4.8-8.7 hours per acre

Overall take home

- Use proactive tools to "match" your site and production goals
 - High clay, high O.M., flat land VS.
 - Rocky, low O.M. sloped land
 - Think about vine spacing, trellis system, and cultivar.
- Cover crops may provide tandem vineyard benefits (soil health, reduced leaching and erosion)
 - Wait until at least year 2-3 to establish
 - Watch nitrogen levels
 - Choose species wisely (F. rubra)

Poling (2006)

Overall take home

- *Riparia* worked well
 - attenuated vegetative growth
 - increased crop yield; maintained wine quality potential
- If experimenting with root restriction:
 - Irrigation may be necessary in dry summers
 - Can "tame" canopy vigor
 - Choose volume wisely ($\geq 0.026 \text{ m}^3$)
 - 0.026 and 0.038 m³ may be "best" in terms of growth regulation and crop yield maintenance

Vine size – fruit quality comment

Farming is a business – need quantity and quality; you can have both

Thanks very much

- Russ Moss
- Sierra Winegarner
- Bree Boskov
- Jason Tosch
- Gill Giese
- Tony Wolf
- Brycen Hill
- Tremain Hatch

