# Making Wine From Smoke-affected Grapes

Are you going to ferment on skins or go directly to press?

- White varietals
   Directly to press
- Red varietals
  - How much smoke is too much for fermenting on skins?
    - Berry analysis guaiacol values
    - Machine-harvested fruit is more problematic but not impossible to salvage

# Making Wine From Smoke-affected Grapes

| WO: 1717078                                                                                                                           |                  | Sample        | es Received: 9/24/2020 Report Date: 9/29/20 | 020 Report No: IAL-17880 |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|---------------------------------------------|--------------------------|--|--|--|
| Lab Sample ID                                                                                                                         | Client Sample ID | Analysis Date | Total 4-methylguaiacol (ppb)                | Total Guaiacol (ppb)     |  |  |  |
| 1717078-51488                                                                                                                         | 20PBBCVPNJV      | 9/29/2020     | 30.2                                        | 62.0                     |  |  |  |
| Test Method: Total 4-methylguaiacol = Total 4-methylguaiacol by GC-MS/MS (Total), Total Guaiacol = Total Guaiacol by GC-MS/MS (Total) |                  |               |                                             |                          |  |  |  |

| WO: 1717096   |                  | Sample        | es Received: 9/24/2020 Report Date: 10/8/20 | 020 Report No: IAL-18391 |  |
|---------------|------------------|---------------|---------------------------------------------|--------------------------|--|
| Lab Sample ID | Client Sample ID | Analysis Date | Free 4-methylguaiacol (ppb)                 | Free Guaiacol (ppb)      |  |
| 1717096-51539 | BCV-14           | 10/8/2020     | 2.33                                        | 13.4                     |  |
| 1717096-51540 | WHV040507        | 10/8/2020     | 6.85                                        | 39.8                     |  |
| 1717096-51541 | HDV0406          | 10/8/2020     | 6.64                                        | 32.5                     |  |

Test Method: Free 4-methylguaiacol = Free 4-methylguaiacol by GC-MS/MS; Method Reference: Metabolites, 10(7): 294. (2020); Reporting Limit = 0.50 ppb, Free Guaiacol = Free Guaiacol by GC-MS/MS; Method Reference: Metabolites, 10(7): 294. (2020); Reporting Limit = 0.50 ppb

| WO: 1717080   |                  | Sample        | es Received: 9/24/2020 Report Date: 10/7/2 | 020 Report No: IAL-18347 |
|---------------|------------------|---------------|--------------------------------------------|--------------------------|
| Lab Sample ID | Client Sample ID | Analysis Date | Total 4-methylguaiacol (ppb)               | Total Guaiacol (ppb)     |
| 1717080-51500 | GRAPES: YMVCHB14 | 10/7/2020     | 4.18                                       | 21.5                     |
| 1717080-51501 | GRAPES: YMVPNB17 | 10/7/2020     | 3.46                                       | 16.8                     |

Test Method: Total 4-methylguaiacol = Total 4-methylguaiacol by GC-MS/MS and Acid Hydrolysis; Method Reference: Metabolites, 10(7): 294. (2020); Reporting Limit = 0.50 ppb, Total Guaiacol = Total Guaiacol by GC-MS/MS and Acid Hydrolysis; Method Reference: Metabolites, 10(7): 294. (2020); Reporting Limit = 0.50 ppb

| WO: 1716930                                                                                                                                                                                                                                                                     |                          | Sample        | es Received: 9/22/2020 Report Date: 9/29/2 | 020 Report No: IAL-17907 |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|--------------------------------------------|--------------------------|--|--|
| Lab Sample ID                                                                                                                                                                                                                                                                   | Client Sample ID         | Analysis Date | Free 4-methylguaiacol (ppb)                | Free Guaiacol (ppb)      |  |  |
| 1716930-51013                                                                                                                                                                                                                                                                   | Pinot Noir Grapes: ROEB7 | 9/29/2020     | 0.70                                       | 3.21                     |  |  |
| Test Method: Free 4-methylguaiacol = Free 4-methylguaiacol by GC-MS/MS; Method Reference: Metabolites, 10(7): 294. (2020); Reporting Limit = 0.50 ppb, Free Guaiacol = Free Guaiacol by GC-MS/MS; Method Reference: Metabolites, 10(7): 294. (2020); Reporting Limit = 0.50 ppb |                          |               |                                            |                          |  |  |



### White & Rose Protocols

What worked:

- Gentle pressing (no higher than 1400mb) and traditional settling method, rack off of gross lees
- Pre-fermentation fining with carbon and bentonite with daily stirring for 3 days followed by settling for 3 days
  - Anecdotal/sensory analysis: pre-fining juice smelled like a campfire; post-fining juice smelled good
  - Best estimate sensory threshold seemed accurate for both whites and Pinot Noir
  - Proceed with fermentation as usual after racking off the carbon lees

Table 4. Best-Estimate Threshold (BET) for Odor and Standard Error (SE) of the Mean Values Determined for Four Volatile Phenol Compounds in Red Wine, as well as the Flavor Threshold for Guaiacol<sup>a</sup>

| compound                     | BET ( $\mu g/L$ ) | SE  |
|------------------------------|-------------------|-----|
| m-cresol ( $n = 23$ )        | 20                | 0.6 |
| guaiacol $(n = 23)$          | 23                | 0.8 |
| guaiacol (flavor, $n = 22$ ) | 27                | 0.6 |
| p-cresol ( $n = 22$ )        | 64                | 0.5 |
| o-cresol ( $n = 22$ )        | 62                | 0.8 |

<sup>a</sup>The number of assessors is also provided.

*Table 4:* Parker, M. et al. Contribution of Several Volatile Phenols and Their Glycoconjugates to Smoke-Related Sensory Properties of Red Wine *J. Agric. Food Chem.* 2012, 60, 2629–2637

### White & Rose Protocols

#### Fermentation – extra measures to "hedge your bets":

- Ferment on chitosan and inactivated yeast product/mannoproteins/polysaccharides and untoasted oak tannin
- Use a vigorous yeast strain with a short lag phase that is a high ester producer
- Rack off of primary lees as soon as fermentation is complete (even if planning to go through MLF)
- If proceeding with MLF, add MLB and MLB nutrient to postracking new wine

## White & Rose Protocols

#### **Preparing for bottling:**

- Get extended and glycosylated smoke markers panel!
- If glycosylated markers are high (where the sum of the bound and corresponding free compounds would equal a number higher than the BET for that compound), execute enzymatic hydrolysis (if desired), re-check glycosylated markers, then proceed with fining
- If free VPs are still at or near BET, treat with Claril SMK (bench trial first) and re-check after treatment
  - > do this before protein/tartrate stabilization
- Consider bottling at  $\geq 3g/L RS$

Different approaches taken harvest of 2020

Low temp, minimal maceration, enzyme & sacrificial tannins for extraction
 Ferm temp range of 72/78F
 Maximum 1 cap management per day

High temp, minimal maceration, enzyme & sacrificial tannins for extraction
 ➢ Ferm temp range of 78/94F
 ➢ Maximum 1 cap management per day

"Usual" protocol, "usual" adds (sometimes none)
➢ Ferm temp range of 72/82F
➢ 1-3 cap managements per day

- High temp, heavy maceration
  - Ferm temp range of 78/94F
  - ➤ 1-3 cap managements per day

Sensory Analysis Best Results: High temp, heavy maceration. The more heavily extracted, fruit-forward wines before smoke mitigation treatments yielded the most balanced and enjoyable wines after treatment.

### Red wine aging and preparation for bottling – Best Results

- Rack off of primary lees as soon as alcoholic fermentation is complete
- Hurry through MLF in tank using temp control and MLB inoculation
- Post-MLF, pre-elevage carbon fining
  - Can proceed with enzymatic hydrolysis before aging (this is not what was done but will be future approach)
  - ➢Get post-hydrolysis extended/glycosylated panel
  - Fine with carbon and bentonite (for settling and to deactivate the enzyme).
- Age on sweet oak, M/ML/M+ toast, American wood or engineered oak products for sweetening.

# Enzymatic hydrolysis in tank

- Glycosidase enzyme at 10-15g/hL
- Result was immediately apparent via sensory analysis after 48 hour bench trial
- Hold wine temp at approx. 64F for 4-6 weeks w/regular agitation
- Result was anywhere from 15%-60% reduction in glycosylated markers (and corresponding increase in free volatile phenols) on all samples analyzed
- Add deodorizing carbon (bench trial recommended here, as well) to treat free VPs and 1#/Kgal bentonite to de-activate enzyme result of this was complete mitigation per sensory analysis

#### **Example of pre-hydrolysis, pre-carbon VP Analysis**

| Analyte       |                               | Resu | lt   | Analysis Date | Method Reference                 |
|---------------|-------------------------------|------|------|---------------|----------------------------------|
| 106080737     | 20UNCONDPN                    |      |      |               |                                  |
| guaiacol GC   | MS/MS                         | 17.3 | µg/L | 6/10/21       | A2LA Accredited Test - SOP# S018 |
| 4-methylguai  | acol GC MS/MS                 | 7.8  | µg/L | 6/10/21       | A2LA Accredited Test - SOP# S018 |
| o-cresol GC I | MS/MS                         | 8.1  | µg/L | 6/10/21       | A2LA Accredited Test - SOP# S018 |
| m-cresol GC   | MS/MS                         | 6.9  | µg/L | 6/10/21       | A2LA Accredited Test - SOP# S018 |
| p-cresol GC I | MS/MS                         | 6.0  | µg/L | 6/10/21       | A2LA Accredited Test - SOP# S018 |
| cresols (sum) | )                             | 21.0 | µg/L | 6/10/21       | A2LA Accredited Test - SOP# S018 |
| phenol GC M   | ÍS/MS                         | 31.5 | µg/L | 6/10/21       | A2LA Accredited Test - SOP# S018 |
| syringol GC N | MS/MS                         | 20.5 | µg/L | 6/10/21       | A2LA Accredited Test - SOP# S018 |
| 4-methylsyrin | ngol GC MS/MS                 | 14.9 | µg/L | 6/10/21       | A2LA Accredited Test - SOP# S018 |
| Smoke Glycos  | svlated Markers LCMS/MS (QQQ) |      |      |               | A2LA Accredited Test - SOP# H032 |
| guaiacol rut  | inoside                       | 18.4 | µg/L | 6/14/21       |                                  |
| 4-methylgua   | aiacol rutinoside             | 11.7 | µg/L | 6/14/21       |                                  |
| cresol rutino | oside                         | 35.5 | µa/L | 6/14/21       |                                  |
| phenol rutin  | oside                         | 24.9 | µg/L | 6/14/21       |                                  |
| syringol aen  | ntiobioside                   | 2.2  | µg/L | 6/14/21       |                                  |
| 4-methylsyr   | ingol gentiobioside           | <1.0 | µg/L | 6/14/21       |                                  |

#### Analysis of same sample post-hydrolysis, post-carbon, 1 year after bottling

| Analyte                                  | Resu | lt   | Analysis Dat | e Method Reference               |
|------------------------------------------|------|------|--------------|----------------------------------|
| 212080045 20 UNC PN                      |      |      |              |                                  |
| guaiacol GC MS/MS                        | 8.4  | µg/L | 12/13/22     | A2LA Accredited Test - SOP# S018 |
| 4-methylguaiacol GC MS/MS                | 3.2  | µg/L | 12/13/22     | A2LA Accredited Test - SOP# S018 |
| o-cresol GC MS/MS                        | 2.1  | µg/L | 12/13/22     | A2LA Accredited Test - SOP# S018 |
| m-cresol GC MS/MS                        | 3.0  | µg/L | 12/13/22     | A2LA Accredited Test - SOP# S018 |
| p-cresol GC MS/MS                        | 2.3  | µg/L | 12/13/22     | A2LA Accredited Test - SOP# S018 |
| cresols (sum)                            | 7.4  | µg/L | 12/13/22     | A2LA Accredited Test - SOP# S018 |
| phenol GC MS/MS                          | 22.8 | µg/L | 12/13/22     | A2LA Accredited Test - SOP# S018 |
| syringol GC MS/MS                        | 12.3 | µg/L | 12/13/22     | A2LA Accredited Test - SOP# S018 |
| 4-methylsyringol GC MS/MS                | 10.8 | µg/L | 12/13/22     | A2LA Accredited Test - SOP# S018 |
| Smoke Glycosylated Markers LCMS/MS (QQQ) |      |      |              | A2LA Accredited Test - SOP# H032 |
| guaiacol rutinoside                      | 3.6  | µg/L | 12/12/22     |                                  |
| 4-methylguaiacol rutinoside              | 3.5  | µg/L | 12/12/22     |                                  |
| cresol rutinoside                        | 10.6 | µg/L | 12/12/22     |                                  |
| phenol rutinoside                        | 8.1  | µg/L | 12/12/22     |                                  |
| syringol gentiobioside                   | <1.0 | µg/L | 12/12/22     |                                  |
| 4-methylsyringol gentiobioside           | <1.0 | µg/L | 12/12/22     |                                  |

### Conclusions drawn from 2020 vintage experience:

- It is possible to make an enjoyable, early-release wine from smoke-affected fruit at a slightly higher final production cost.
  - The wine featured in the previous analyses was an 8000 cases total production and has shown well in the market over the past year and is now mostly sold/consumed.
- With red wines, a heavy extraction approach yields the best post-treatment result.
- Spending the extra money on pre- and post-treatment extended and glycosylated volatile phenols panel before deciding to bottle is worth it.
- The commonly publicized "Best Estimate Sensory Thresholds" for VPs seem to be accurate according to most tasters.
- Bottling at 3g/L RS (reds and whites both) had a positive effect on sensory perception of smoke markers.
- I would repeat my decision to produce only the sub-\$25 SRP Pinot Noirs due to insufficient data on long-term bottle aging effects of smoke markers.