

Brettanomyces Management in the Winery

Karl Weichold, Estate Winemaker - Stoller Wine Group

Brettanomyces – All About Risk Management

- Understanding your current risk exposure
 - Identifying extant and potential vectors.
 - Making an honest assessment of your sanitation regime.
- Assess your risk tolerance
 - What can your style of winemaking allow?
 - What would you be willing to lose?
 - What would you be willing to sell? And to whom?
- What can you prevent?
 - What tools are currently at your disposal?
 - Making the business case for preventative equipment.

Addressing Brettanomyces in the Winery

- Assuming that the desired result is maximally reducing Brettanomyces growth in wine, a winemaker's approach should include the following:
 - Prevention
 - Detection
 - Treatment

Brettanomyces Prevention

Strategies, methods and metrics

Physical and Chemical approaches as Prevention

- Elimination of substrates
- Sulfite management
- pH and its relation to SO2
- Lees exposure
- Temperature
- Ethanol concentration

Elimination of Substrates

- Consumption of all reducing sugars
 - Healthy inoculum
 - Commercial vs "spontaneous" yeast
 - Use of O2 during fermentation
 - Temperature control
 - Post-fermentation RS concentration
 - Ideally below LOD for your available method (eg <0.10 g/L for most enzymatic tests)
- Out-competing other microflora
 - MLF timing

	Spontaneous fermentation	AF with a strain of selec- ted yeast and specific nutrients
Brettanomyces population (UFC/mL)	6 × 10 ³	6 × 10 ¹
4-Ethyl phenol (μg/L)	430	45

Table 1. Interest in utilizing a selected yeast starter and specific nutrients for better control of the microbial ecosystem. (Analyses conducted at the end of AF. Renouf 2006)

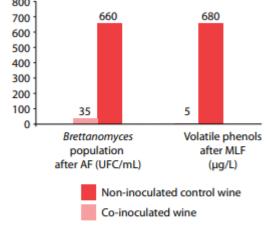
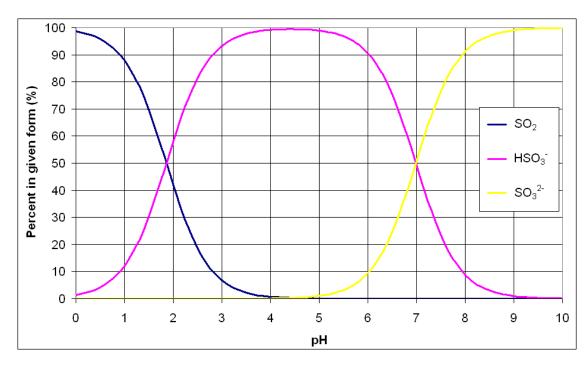


Figure 1. Population of Brettanomyces and concentration of volatile phenols in a Cabernet Franc before and after MLF

Sulfite Management

- Common/General Guidelines for SO2 Management
 - Maintaining safe mSO2 levels
 - 0.8-0.9 ppm for whites and roses
 - 0.5-0.6 ppm for reds
 - Timing and rate of sulfite additions
 - One large initial sulfite addition vs multiple small additions
 - Rapid MLF allows for earlier sulfite addition



pH and its Relationship with mSO2

- mSO2 as an antimicrobial agent
 - Larger % [mSO2] at lower pH
 - Practical wine pH for safer [mSO2]
 - For reds, <3.8, preferably under 3.65
 - For pH of 3.65, 42 ppm fSO2 is 0.6 ppm mSO2
 - For whites/roses, <3.45, preferably <3.3
 - For pH of 3.45, 40 ppm fSO2 is 0.6 ppm mSO2

Other means of prevention

- Lees Exposure
 - Timeliness of racking
 - Lees condition/% composition
- Temperature
 - Temperatures above 65F can facilitate Brett growth, even at reasonable [fSO2]
- Ethanol Concentration
 - Not necessarily as practical as other means of prevention

Sanitation

- Barrel cleaning and maintenance
 - Steaming
 - Ozone
 - Dry Storage and wet storage
- Tanks and other storage formats
 - Typical cleaning regimes
 - log 4 kills
- Pumps, fittings, lines and other winemaking implements
 - What are you cleaning weekly/monthly/yearly?

Managing vectors for Brettanomyces

- Acquiring new storage formats or winemaking equipment
 - Tanks
 - Barrels
 - Fittings, valves, etc
- Bulk Wine
 - Origin
 - Wine Chemistry
 - Quarantine and testing

Brettanomyces Detection

Assays and analysis

Sensory Analysis

- What constitutes "threshold"
- Frequency of sampling
 - Representative sample size (barrel lots, etc)
 - Importance of sampling individual formats

Table 2. What is the sensory detection threshold for Brett compounds?

	Aroma threshold (µg/L)¹		
	4-EP	4-EG	4-EC
French Bordeaux Cabernet Sauvignon ²	605	110	
Australian Cabernet Sauvignon ³	368	158	774
Australian green Cabernet Sauvignon	425	209	1131
Australian oaky Cabernet Sauvignon	569	373	1528

ASTM three-alternative forced choice method, ascending concentration series.
Chatonnet et al. 1992.

^{3.} Bramley et al. 2007

Detection in the Lab

- Brett-selective plating
 - Actidione agar-based media
- ETS Scorpions
 - Actionable interpretation of results
 - Can detect VNC
- Invisible Sentinel
 - Turn-key PCR assay
 - Rapid turnaround for results

Chemical Analysis

- Consumption/ratio of fSO2 to tSO2
 - 1:2 or 1:3 typical
 - 1:5+ suggest binding to other biological activity
- Quantification of Volatile Phenols
 - Good proxy for Brettanomyces growth
 - Must be interpreted in context of exposure to oak

Brettanomyces Treatment

Isolation, Inhibition, and removal

Isolating Brettanomyces Infections

- Quarantining confirmed infections
 - What's touched what?
 - Establish a testing regime and follow up
- Persistent infections on equipment and storage formats
 - Disposal of infected vessels Don't sell Brett barrels to colleagues, make planters
 - Log 4 kill, not just for tank surfaces
 - Sterilization vs Sanitization

Inhibition and Removal of Brettanomyces

- Inhibition
 - Increasing fSO2/mSO2 concentrations
 - Sorbic acid
 - DMDC (Velcorin)
- Removal
 - Chitosan and racking
 - Filtration

Volatile Phenol Removal/Minimization

- Reverse Osmosis
 - Selective media for filtrate
- Activated Charcoal
- Esterified Cellulose polymers
- Silica fining
- Blending below threshold

