SYMPOSIUM Diving Deep Into Winery Water Usage & Treatment Bob Coleman, Technical Winemaker

OREGOM

TREASURY WINE ESTATES

Start Upstream in the winery...

- Reduce process water by:
 - number of wine movements (tank to tank)
 - frequency and depth of cleaning
 - lessen deposits on tank surfaces
- Reduce waste going to treatment (electricity):
 - address winery process waste
- Smart cleaning chemistry:
 - inorganic chemistry
 - hydrogen peroxide

At the ponds...

- Smart controls:
 - dissolved oxygen and redox

Reduce Process Water

Tank to tank movements

Potential items to wastewater:

- water
- cleaning chemicals
- lees
- bentonite
- potassium bitartrates
- wine

Need practices to minimize and reduce

• Tank to tank movements

Potential items to wastewater:

- water
- cleaning chemicals
- lees
- bentonite
- potassium bitartrates
- wine

Need practices to minimize and reduce

• In-place or in-line movements

- Reduce tank cleaning
 - minimize water and chemicals
 - minimize wine loss
- Jameson cell
 - collect solids in-line
- Protein adsorption columns
 - collect unstable heat proteins inplace

Fluidized bed cold stabilization

- cold stabilize wine in-place
- collect and reuse potassium bitartrate

- Jameson Cell
 - In-line solid removal
 - Replaces more energy intensive removal
 - centrifugation
 - decanters
 - cold settling
 - Floatation cell

Modified from: Taşdemir, T.; Tasdemir, A.; Oteyaka, B., Gas entrainment rate and flow characterization in downcomer of a Jameson cell. *Physicochemical Problems of Mineral Processing* **2011**, *47*, 61-78.

• Protein adsorption columns

- In-place protein removal
- Protein / heat protein adsorption material
 - Macroprep
- Regeneration / reuse column
- Eliminate the need for bentonite

• Fluidized Bed Cold Stabilization

- In-place cold stabilization
- Recoup refrigeration energy
- Reduce energy
- Collect and reuse KHT crystal
- Reduce wine loss
- Minimal water

Minimize Frequency and Depth of Cleaning

- In-place movements
- Electropolish

Reduce Waste Going to Treatment

Winery Wastewater

Figure 1. Breakdown of winery electricity use identified during the energy audit, with a further breakdown of the electricity used for refrigeration

OREGON WINE SYMPOSIUM

AWRI Technical Review No. 235, August 2018

Winery Process Waste

- Lees removal services
 - high proof recovery
 - bulk wine
 - solids to compost
- Screens
- Jameson Cell

Smart Cleaning Chemistry

- Current cleaning chemistry considerations:
 - Organic acids for sanitation adds COD, BOD, and electrical input for treatment
 - citric acid
 - paracetic acid
 - Na, PO₄, NO₃, Cl₂, ClO₂, O₃ soil, water, safety, and/or environmental persistence
 - Steam safety and high gas or electrical input

Ideally avoid or minimize the practices above

Paired Potassium-Based Buffers for Sanitizing Winery Equipment and the Carbon,

Nitrogen, Sodium, and Phosphorus Footprints of Winery Cleaning Practices

Roger Boulton

Advances in Wine Research. January 1, 2015 , 379-387 DOI:10.1021/bk-2015-1203.ch024

- Basic Wash
 - 20 mM KOH (1.1g/L), pH=11.5
 - potassium based caustic
- Acid Wash
 - 20 mM KHSO₄, (2.7g/L), pH=2.5
 - cake mixes, adjust pH in food
 - sulfate concentration less than soil concentration

No COD and BOD

- Basic Wash
 - 20 mM KOH (1.1g/L), pH=11.5
 - potassium based caustic
- Acid Wash
 - 20 mM KHSO₄, (2.7g/L), pH=2.5
 - cake mixes, adjust pH in food
 - sulfate concentration less than soil concentration

Neutralizes to:
20 mM K₂SO₄
pH=7.0
Appropriate pH for wastewater ponds

No COD and BOD

Before final neutralization:

nanofiller or semi-permeable filter separately to reuse the chemistry

Hydrogen Peroxide

- Clean chemistry
 - hydrogen peroxide effective at pH 2.5 and 11.5
 - disinfection at 0.5% (lower percentage than supermarket hydrogen peroxide)
 - breaks down to water and oxygen
- On-site generation
 - transportation safety avoid hauling 30%
 - generate at or slightly above using percentage (0.5%)

Smart Controls

Dissolved Oxygen

- Smart controls:
 - dissolved oxygen probes tied into PLC / SCADA
 - DO probe cleaning compressed air

Redox

• Smart controls:

- Redox probes
- Origin of hydrogen sulfide (H₂S)
 - microbes
 - low redox potential of solution generated by microbes
- Modify redox with small injections of air

More readings: Killeen, D. J., Boulton, R., & Knoesen, A. (2018). Advanced monitoring and control of redox potential in wine fermentation. *American Journal of Enology and Viticulture*, 69(4), 394-399.

Conclusion

- In-place movements
 - Jameson Cell future
 - Protein adsorption columns in progress
 - Fluidized bed cold stabilization in progress
- Electroplating now
- Collection and off-site lees treatment now
- Smart cleaning chemistry now
- Smart wastewater treatment controls now

SYMPOSIUM Diving Deep Into Winery Water Usage & Treatment Bob Coleman, Technical Winemaker

OREGOM

TREASURY WINE ESTATES