Role of Oxygen in Winemaking

Gavin L. Sacks

Professor and Associate Chair of Food Science Cornell University

Oregon Wine Symposium 2022

College of Agriculture and Life Sciences

Today's talk

The fate of oxygen, and its effects on wine, depend on timing

- Prefermentation
- During fermentation, or while in lees contact
- Post-fermentation, no lees contact

I'll try my best to hit the highlights of what happens at each of these stages . . .

But in a 30 min talk, there's bound to be some things left out

Quick terminology review – "Air Saturation"

The solubility of O_2 in wine and juice is limited

Solubility increases with decreasing temperature

- 10 mg/L at 15 °C
- 8 mg/L at 25 °C

Once this concentration is reached in the presence of air, the wine is "saturated" with oxygen

Outcome: unless you have an O₂ tank, aeration devices in the winery or the dining table are changing kinetics (the rate), not thermodynamics (the solubility)

Fate of oxygen depends on "when" the exposure occurs

	Fresh must, no SO ₂	Actively fermenting wine	Filtered wine w/ SO ₂
Primary O ₂ consuming reaction			
Typical O ₂ consumption rate in air saturated system			
Potential danger of O ₂ to wine quality			

Oxygen and wine: three different eras

	Fresh must, no SO ₂	Actively fermenting wine	Filtered wine w/ SO ₂
Primary O ₂ consuming reaction	Polyphenol oxidase (PPO) from grape Laccase from botrytis		
Typical O ₂ consumption rate in air saturated system	1-3 mg/L per min		
Potential danger of O ₂ to wine quality	Low-medium		

Most obvious effect of oxygen \rightarrow enzymatic browning (grapes, bananas, apples, potatoes, etc)

Enzyme = Polyphenol oxidases (PPO) Grapes and other fruits: *tyrosinases* Molds: *laccase*

- Follows mechanical damage
- Rapidly oxidizes diphenols to "quinones"
- Unsulfited, freshly crushed grapes will consume 1-3 mg/L O₂ per min
- No peroxide formation

College of Agriculture and Life Sciences

Enzymatic browning (PPO) results in, um, browning

Oxidized juice

What will slow enzymatic browning?

"Antioxidants"

- Free SO2 (inactivates PPO; less effective on laccase)
- Ascorbic acid (reacts with quinone, reforms phenol)
- Glutathione (from grapes; forms "GRP")

Other treatments

- Heating (T > 55 °C) will denature enzymes
- Cooling slows enzymatic activity
- Fining agents (e.g. bentonite, charcoal) denature enzyme and remove brown products

Terminology time. Feel free to argue

But, pre-fermentation reductive vs. oxidative practices often have small effects on finished wine

Hyperoxidized Chardonnay must

Partway through fermentation

Hyperoxidized must after fermentation

The well-established effects

Hyperoxidation decreases 'browning potential' in white wines More oxygen (and low SO2) = more aerobic spoilage growth

Everything else . . . Minor effects, and often contradictory Aroma, Taste, Mouthfeel? Small effects, when present.

Why? Some speculation

- Fermentation is a strongly 'reducing' environment (opposite of oxidizing). Many pre-fermentation reactions will be reversed
- Many wine flavor compounds, including oxygen-sensitive compounds, are released from precursors

A case study – 3-mercaptohexanol (3-MH) "citrus" odorant in wine, not found in grapes

3-MH = 'varietal thiol', <u>easily oxidized</u>, key odorant in Sauv blanc and other whites/roses Several 3-MH precursors have been identified, including

Cornelicals College of Agriculture and Life Sciences

"grapefruit"

3-MH, GSH and other thiols are easily oxidized. What's the effect of pre-fermentation anti-oxidants?

Hyperoxidation can decrease wine thiols slightly (Coetzee, et al 2015) *Why? Probably loss of glutathione, less precursors*

But, adding SO₂ can have minimal or inhibitory effect on precursors! (see data at left)

Why? SO2 may inhibit formation of grassy aldehydes (Capone and Jeffery, 2011)

But, oxidation matters much less than just letting the fruit sit around before fermenting

Longer time after harvesting = More time for precursors to form!

Oxidation (and antioxidants) = Not so important. High SO2 may inhibit precursor formation

Gavin Sacks / Oregon Wine Symp. 2022

College of Agriculture Te Capon

Cornell**CALS**

Capone and Jeffery, JAFC 2011

Oxygen and wine: fermentation

	Fresh must, no SO ₂	Actively fermenting wine	Filtered wine w/ SO ₂
Primary O ₂ consuming reaction	Polyphenol oxidase (PPO) from grape Laccase from botrytis	Yeast enzymatic activity	
Typical O ₂ consumption rate in air saturated system	1-3 mg/L per min	1-3 mg/L per min	
Potential danger of O ₂ to wine quality	Low-medium	Medium	

Yeast have lots of uses for oxygen, but a big one is unsaturated fatty acid production

Yeast cell membranes contain fatty acids (as phospholipids)

Yeast adjust their fatty acid and sterol composition in response to environment

Colder temps? Less saturated, more unsaturated fatty acid, please

Saturated fatty acids Higher melting point

Enzymatic transformation

Unsaturated fatty acids Lower melting point

Oxygen as a <u>nutrient</u>

Low oxygen limits unsaturated fatty acid and sterol production

Limits yeast growth and fermentation rate

The effect is more acute with ...

- Cool fermentations
- Closed fermenters
- Low insoluble solids (clarified musts)

In other words, greater issue with whites!

But, there are other effects of oxygen addition during fermentation (of course)

Many microorganisms (non-Sacch. yeasts, Acetobacter, etc) grow faster with air

- Often will produce higher V.A. under aerated conditions (but, not S. cerevisiae)

O₂ affects amino and fatty acid production, and thus odorants

- Decreased acetate esters (banana-cherry-Beaujolais)
- Decreased straight chain ethyl esters ("fruit salad")
- Increased higher alcohols ("solvent, ethereal")
- Increased branched-chain (BC) fatty acids
 - \rightarrow Will form BC ethyl esters during storage ("dark-red fruit")

Biomass (lees), glycerol, succinic increase

Often undesired in "fruit-forward" whites or roses

Oxygen and wine: post-fermentation

	Fresh must, no SO ₂	Actively fermenting wine	Filtered wine w/ SO ₂
Primary O ₂ consuming reaction	Polyphenol oxidase (PPO) from grape Laccase from botrytis	Yeast enzymatic activity	Non-enzymatic Metals + Phenolics + SO ₂
Typical O ₂ consumption rate in air saturated system	1-3 mg/L per min	1-3 mg/L per min	0.1-1.0 mg/L per hour
Potential danger of O ₂ to wine quality	Low-medium	Medium	High

Note: lees will continue to consume O_2 . Thus emphasis on "filtered"

Review: The major effects of O₂ on finished wine

1) Microbial growth, due to presence of O_2 and/or loss of SO_2

- Take your pick . . . Film yeasts, Acetobacter, LAB, Brettanomyces
- Off-flavor and haze formation
- Possible regulatory issues

2) Chemical changes ("oxidation")

- Next slide!

Cornelicals College of Agriculture and Life Sciences

What happens to oxygen in a wine with no SO_2 ? Two pathways

Cornell**CALS**

College of Agriculture [©] and Life Sciences

Kreitman, Elias, Jeffery, and Sacks; Crit Rev. Food Sci Nutr. 2019

Chemical oxidation isn't always bad, an example "Micro-ox" and wine phenolics

Micro-ox reports from literature typically show

- Modest increases in wine pigment (also called **polymeric pigment**)
- Modest decreases in astringency

Review: Sulfur dioxide (SO_2) is used to counteract the effects of O_2 on wine

"Free SO₂" = molecular + bisulfite molecular SO₂ Bisulfite $SO_2 + H_2O \implies H^+ + HSO_3^-$

Bisulfite is the main contributor to free SO2 at wine pH, and the major antioxidant form

Review: Sulfur dioxide (SO_2) is used to counteract the effects of O_2 on wine

Anti-microbial

- Typically, 0.5-1.0 mg/L **molecular** SO₂ recommended to prevent spoilage

Anti-oxidant: reacts with products of oxidation

- At <10 mg/L free SO₂ oxidized aromas are often evident
- Typically, 20-30 mg/L free SO₂ recommended at bottling
- Hardest function to replace

Review: Free SO₂ may form covalent bonds with binders to form "Bound SO₂"

Bound SO₂ has less antimicrobial and antioxidant 'activity'

Bound SO₂ forms are in equilibrium with Free SO₂

As free SO_2 is consumed, the "reservoir" of bound SO_2 will re-equilibrate, partially replenish free SO_2

"Bound SO₂"

Add free SO₂ to a wine, a portion is "bound" A partial list of binders

Remember this? The two oxidation pathways?

Cornell**CALS**

College of Agriculture 🥂 🕅 and Life Sciences

Kreitman, Elias, Jeffery, and Sacks; Crit Rev. Food Sci Nutr. 2019

Free SO₂ (as bisulfite, HSO₃⁻) interrupts both pathways

The role of SO_2 is not to react with O_2 directly

It "reduces" (chemically speaking) oxidation products

Theoretically, up to 4 mg/L of Total SO₂ will be lost for every 1 mg/L of O₂ 2:1 Molar Ratio

So, there's two reasons why a wine could accumulate free aldehydes following oxidation (and smell oxidized)

Option A – Oxidation results in **production of new aldehydes**

Option B – Oxidation releases existing aldehydes

 1) Bound SO₂ pool exists in wine
2) Free SO₂ is consumed through oxidation reactions
3) Acetaldehyde ("bruised apple") and other oxidation products are released

What's the evidence for forming aldehydes vs. releasing aldehydes?

Recent packaging evaluation trial

Three wines, multiple bag-in-box packages Two storage temperatures (19 vs. 31 °C) Free and total SO₂ measured at regular intervals, up to 400 d

Total SO₂ loss rate varied from 0.13-0.94 mg/L per day (equivalent to 0.03-0.24 mg/L O₂ ingress per day)

Dissolved O₂ well below saturation over course of experiment

Free, Bound, and Total Sulfur Dioxide (SO₂) during Oxidation of Wines

Gavin L. Sacks,^{1*} Patricia A. Howe,^{2,5} Matthew Standing,^{3,6} and John C. Danilewicz⁴

lege of Agriculture Life Sciences

If "new" aldehyde formation is more important than aldehyde release, what should happens to SO₂

Hypothetical Data for SO₂ in wine during oxidation if new aldehyde formation occurs

- From previous slide, Fenton Reaction expected to become more important at low Free SO₂
- Rate of Total SO₂ loss should slow as Free SO₂ approaches zero.
- Why? Fenton generates acetaldehyde and other SO₂ binders, but would not change Total SO₂

ollege of Agriculture nd Life Sciences

Sacks, Howe, Standing, and Danilewicz; AJEV 2020

Instead, we observe constant Total SO_2 loss . . . Even after Free SO_2 is no longer detectable

Cornell**CALS**

Constant rate of Total SO_2 loss even after Free $SO_2 < 2 \text{ mg/L}$

Similar results observed for other wines (Merlot, Cab Sauv) in all treatments

Interpretation: Bound SO_2 released from acetaldehyde is more important to H_2O_2 removal than the Fenton reaction!

Free SO₂

Sacks, Howe, Standing, and Danilewicz; AJEV 2020

Why does it matter if aldehydes are coming from release of "bound" forms? A couple thoughts.

- 1) If the key malodorous aldehydes (e.g. methional) are formed at the end of fermentation, can we get rid of them before sulfiting?
 - For example, through lees contact (akin to lagering in beer)?
 - Will this result in wines that smell fresh even at low levels of free SO2?

- 2) What's the source of aldehydes during microoxygenation?
- Is it bound aldehydes, i.e. acetaldehyde-bisulfite?
- Is variability in micro-ox among wines a reflection of variability in this bound pool?

Today's talk – a review

• Prefermentation

Oxidized must looks bad; but unless there's microbial spoilage, longterm effect are modest. A little O2 might increase thiol precursors!

• During fermentation, or while in lees contact

Oxygen is a nutrient! But, its presence suppresses ester formation

• Post-fermentation, no lees contact

Microbial growth and abiotic oxidation Did you know . . . Aldehydes are mostly coming from bound forms?

In a 30 min talk, I know I left things out. Time for Q&A?

