2/18/2022

SYMPOSIUM

OREGON WINK

Viticulture for Winemakers: Vineyard Integrated Pest Management

Dr. Patty Skinkis, Professor & Viticulture Extension Specialist

Oregon State University College of Agricultural Sciences

What is Integrated Pest Management?

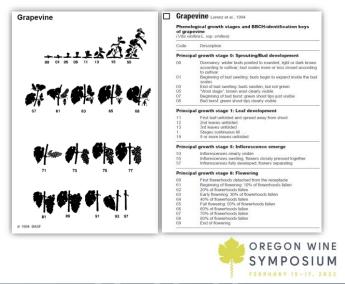
IPM – Integrated Pest Management

Use of multiple methods to ensure sustained management of major pests without disrupting the cropping system ecology

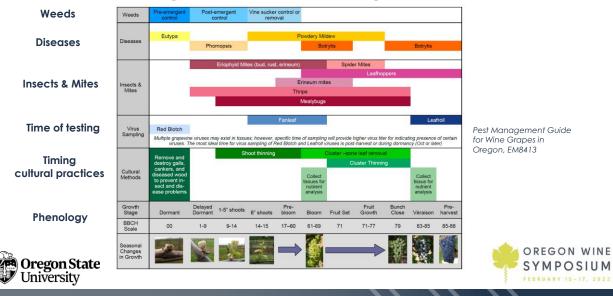
Considered best management practices (BMPs)

Challenge:

Vines are perennials; management is critical from one year to the next.



Reading the Vines: Phenology


Operations must adhere to vine growth stages

- Timing and sequence
- Spray programs
- · Canopy management
- Fertilization
- Irrigation

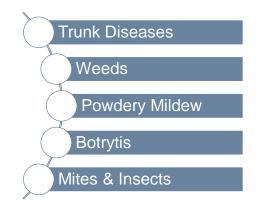
Seasonal Management of Pests in Oregon

Key Concepts in Vineyard IPM

- Use different methods of pest control
 - Chemical + cultural + biological
- · Understand vineyard and surrounding ecosystem

General Method	Tactic
Chemical	Pesticides (conventional, organic, biodynamic)
Cultural	Vineyard design, training system, irrigation, canopy management, etc.
Biological	Increase biodiversity on site (cover crops, perimeter plantings, etc.) Introduce beneficial organisms

Vineyard IPM –


- Pesticide use is required in all commercial vineyards
 - Grape powdery mildew, Botrytis, others...
 - Weeds different products but fewer registered/effective for organic/BD
- Pair chemical control with cultural practices
 - Improve spray coverage
 - Sensitivity of crop (e.g., leaf removal for powdery mildew/botrytis)
 - · Practices to alter vine microclimate

Annual Pest Management

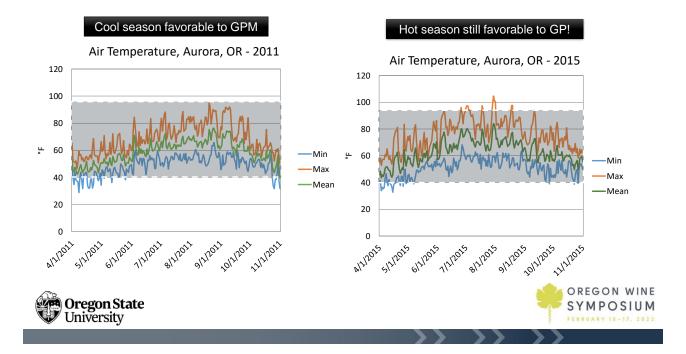
Fungal Diseases

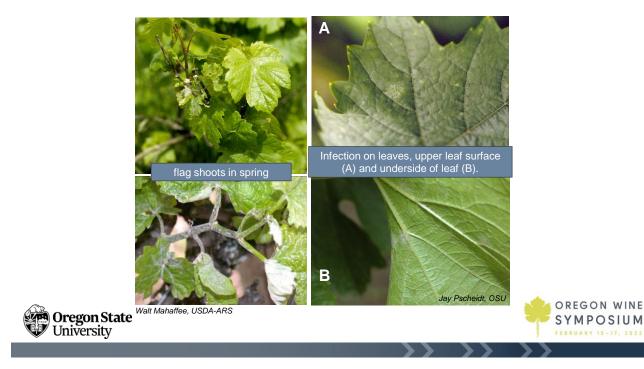
Annual foliar disease management

Oregon State

Grape Powdery Mildew

Erisyphe necator / Uncinula necator


- · Infects: buds, leaves, shoots, and berries
- Infection period: bud break → ripening
 - SPRING: Ascospores sexual spores
 - SUMMER: Conidia asexual spores
 - Different conditions for infection of ascospores vs. conidia
- · Favored by mild conditions
 - Moderate temperatures (optimum 71-82°F)
 - · Free water is NOT always needed for infection!



Conditions for good grape growth = those for powdery mildew infection!

Leaf infection

Severe!

Powdery mildew infection visible at fruit set

Grape Powdery Mildew - Symptoms

- Berry cracking may occur due to necrotic areas
- Later season infection of berries scarring without cracking
- <5% infection = off flavors in wine

David Gadoury

Berry infection pre-bunch closure

Shoot - in season

Late season

Old scars on cane the following season

Powdery Mildew Management

Forecasting to determine spray timing, interval

- Gubler-Thomas Model
 - Ascospore phase air temperature and duration of leaf wetness
 - Conidia phase air temperature
 - Risk index used to make spray decisions
 - · Linked with weather stations
 - Risk level determined through online heat unit mapping (uspest.org)

Gubler-Thomas Model – Conidia Phase

Treatment timing guidelines based on risk index and spray material							
Powdery Mildew Risk Index	Spray Material	Spray Interval					
	sulfur dust	14 days**					
0 to 30 (low risk)	micronized sulfur	18 days**					
	Synthetic fungicides*	21 days**					
	sulfur dust	10 days					
40 to 50	micronized sulfur	14 days					
	Synthetic fungicides*	17 days					
	sulfur dust	7 days					
60 to 100 (high risk)	micronized sulfur	10 days					
	Synthetic fungicides*	14 days					
* Synthetic fungicide classes vary; 21 d not recommended in W.V. OR							
** Or label maximum.							

http://www.ipm.ucdavis.edu/DISEASE/DATABASE/grapepowderymildew.html

Higher risk = shorter interval between sprays

OREGON WINE

SYMPOSIUM

Powdery Mildew Management

- Chemical control
 - Synthetic fungicides
 - Organic fungicides (sulfur, horticultural oils, etc.)
- Canopy management
 - ↑ sun exposure to canopy (UV light)
 - \uparrow air flow/ \downarrow relative humidity

Reduce canopy density, leaf removal, & hedging

SYMPOSIUM

Example IPM strategies for Powdery Mildew and Botrytis Control

	Growth Stage	Dormant— Early growth	6" shoots	Pre-bloom	Bloom	Fruit Set	Grow	Fruit th (summer)		Véraison	Pre-harvest	
	BBCH Scale	00-12	14-15	17–60	61-69	71		71-79		83-85	85-88	
					POWE	DERY MIL	DEW					
	Primary Applications		Sulfur: high label rate (7-10 days)	13, 50 or U6 alor	rom groups le or in mixe C groups.ª	s with la	ulfur: high	Groups 13, 50 or U6, alone or mixed with other groups ^a	(7-14	Groups 13, 50 or U6, alone or mixed with other groups		BLOOM:
	Supplemental Applications		M-Peo	de or JMS Stylet O	il; use cautio	on if applyi	ng after sul	fur, do not m	ix with sul	fur		Critical for fungicide application; start at
	Cultural Methods			ninning and sucker removal		cluster-	aves in -zone of canopies	Hedge d canopies or growth th irrigati	regulate rough			10% bloom!
					B	BOTRYTIS	S					
	Primary				Critical to sp bloom (western 0	1		Critical to s bunch cl (BBCH 7	sure	methods;	ural control spray only if essary	
	an		Cultural methods to reduce canopy density and shading should be used with chemical applications to prevent Borytis. Rotate and/or tank mix fungicides that have different mode of action (FRAC) groups so that hon product is used more than two times per season to prevent fungicide resistance. Always use a product with a different FRAC group than was used for the previous applica- tion.									
	Supplemental Applications				that have Bo usceptibility						l cultivar	
	Cultural Methods			hinning and itioning			aves in r-zone	Hedge or r growth with			eaves in ier-zone	
Oregon St University	tate							Pes	t Mgmi	t Guide,	EM8413	OREGON WINE SYMPOSIUM FEBRUARY 15-17, 2022

Botrytis Bunch Rot

Fungal pathogen: Botrytis cinerea

- Infection risk at bloom and ripening
 - May be latent until late season
- Needs free water, 58-82°F
- Symptoms
 - Flag shoots
 - Stem necrosis
 - Flower infection → latent until ripening
 - · Berry breakage and rot

Botrytis Bunch Rot

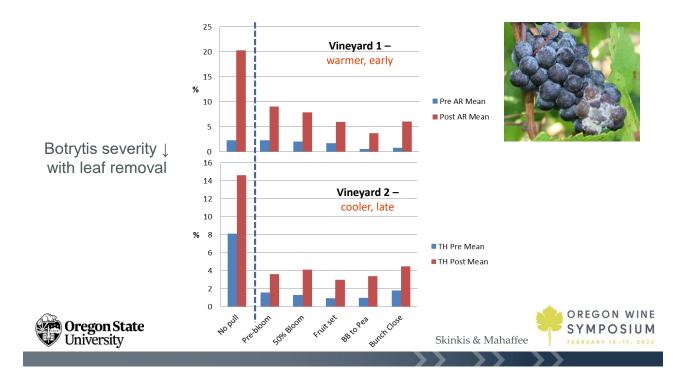
Impacts

- Reduced yield (culling affected fruit)
- · Reduced fruit quality
- Fruit fly attractant and further rots

Botrytis Management

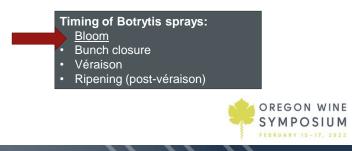
- Cultural methods
 - Timely canopy management
 - Early leaf removal
- Chemical controls
 - Early season: prevent initial infection (bloom)
 - Ripening phase: prevent spread

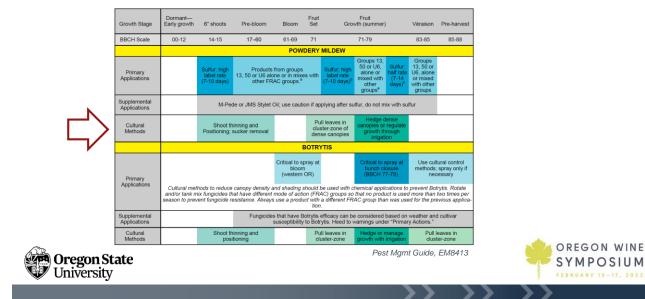
(bunch close, véraison and later)



Cluster zone leaf removal

- Optimum timing = fruit set to BB or pea size
- Optimum amount?



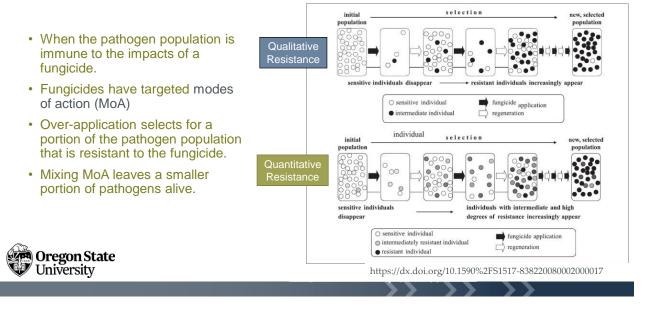


Temperature (°C)	Temperature (°F)	Minimum number of hours of berry wetness* (Medium risk)	Minimum number of hours of berry wetness* (High risk)				
30	86	28.8	32.2				
29	84.2	22.4	25.9				
28	82.4	19.0	22.1				
27	80.6	16.9	19.5				
26	78.8	15.3	17.8				
25	77	14.3	16.5				
24	75.2	13.5	15.6				
23	73.4	13.0	15.0				
22	71.6	12.6	14.7				
21	69.8	12.5	14.5				
20	68	12.5	14.4				
19	66.2	12.6	14.6				
18	64.4	12.9	14.9				
17	62.6	13.4	15.5				
16	60.8	14.1	16.3				
15	59	15.1	17.4				
14	57.2	16.5	19.1				
13	55.4	18.5	21.4				
12	53.6	21.5	24.9				
* If berries are dry for fewer than 4 hours, the wet periods are considered one event. If berries are dry for more than 4 hours, the wet periods are considered separate events.							

Botrytis Management

- Infect at ≥53 °F and as few as 4 hr leaf wetness
- Follow temperature and berry wetness to determine when/if to spray
- · Fungicides should be applied
 - BEFORE rain event
 - · Medium risk level

Example IPM strategies for Powdery Mildew and Botrytis Control


Fungal Disease Management

- Chemical
 - Fungicides are used to <u>protect</u> plant tissues <u>before infection</u> (shoots, leaves, fruit)
 - Start applying at 6 in shoot growth (GPM)
 - · Continue with conditions and/or product intervals
 - Rotate product <u>modes of action</u> to avoid pest resistance development
- Cultural
 - Canopy management
 - Shoot thinning
 - Hedging
 - Cluster zone leaf removal

What is Fungicide Resistance?

Steps to Avoid Fungicide Resistance

- Alternate fungicides different modes of action
 FRAC Codes
- Tank mix different groups
- Rotate with low risk chemistries (multi-site MoA)
- DO NOT use resistance-prone products to control epidemic
- Limit resistance-prone groups to <2 applications/season
- Use the rates shown on the label
 - Do not use lower rates \rightarrow increases resistance!

Steps to Avoid Fungicide Resistance

- · Ensure good coverage and application
 - · Follow the label
 - Calibrate your sprayer
 - · Have the correct sprayer for your canopy
 - · Change spray volume with change in canopy size
 - Spray every row!
- Good coverage = prevent fungal pest infection
- Lack of coverage = pest can infect vines and subsequent sprays are "selecting" for resistance as population is present

Multi-state research on fungicide resistance in vineyards.

OR, WA, CA, MI

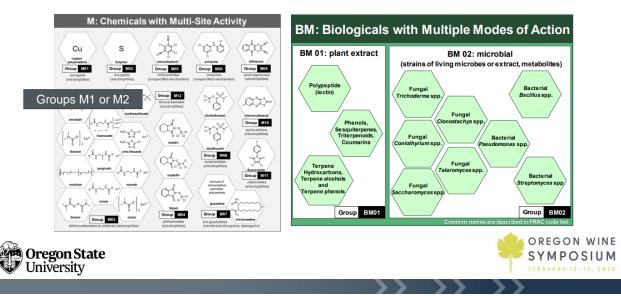
Research and outreach objectives.

SYMPOSIUM

Spray Programs: Fungal Diseases

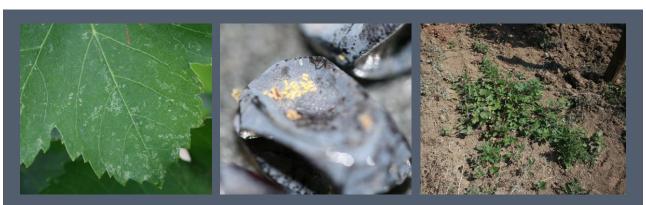
- Conventional
 - Diverse classes of products (active ingredients)
 - Contact
 - Systemic
 - Most common products
 - Systemic fungicides
 - Sulfur or oils

Organic & Biodynamic


- Fewer products
- · Active ingredients less prone to resistance
- Contact only
- Most common products
 - Sulfur (M02)
 - Horticultural oils (NC)
 - Salts of fatty acids (NC)
 - Biologicals (BM)

Fungicide resistance action committee (FRAC) provides modes of action (MoA) classes

OREGON WINE SYMPOSIUM FEBRUARY 15-17, 2022


Organic approved products are less likely to form resistance in the pathogen population.

Check efficacy reports for fungicide products

iprodione (Rovral, Nevado)	Group 2	Not effective	Not effective	Good**		Just b	ecause a label says it can
flutriafol	Group 3	77	Good**	Slight–fair	Powdery mildew resistance detected		ed for a disease, does not
mefentrifluconazole (Cevya)	Group 3	Good	Good-excellent	Not effective			nean it will work well!
myclobutanil (Rally)	Group 3	Not effective	Good**	Not effective	Powdery mildew resistance detected		
tebuconazole (Orius, Tebuc	Group 3	Not effective	Fair-good**	Not effective	Powdery mildew resistance detected		
tetriconazole (Mettle)	Group 3	Not effective	Good**	Not effective	Powdery mildew resistance detected		Check local Extension
triadimefon (Bayleton)	Group 3	Not effective	Good**	Not effective	Powdery mildew resistance detected		pest guides for efficacy
triflumizol (Procure, Trionic)	Group 3	Not effective	Good**	Not effective	Powdery mildew resistance detected		information.
boscalid (Endura)	Group 7	Not effective	Good-excelle	Fair-Good**	Powdery mildew resistance suspected	Botrytis resistance detected	
fluopyram (Luna Privilege)	Group 7	Not effective	Good-excelle	Good**	Powdery mildew resistance suspected	Botrytis resistance detected	
isofetamid (Kenja)	Group 7	Not effective	Good-excelle	Good**	Powdery mildew resistance suspected	Botrytis resistance detected	
solatenol (Aprovia)	Group 7	Good	Good-excelle	Slight**	Powdery mildew resistance suspected	Botrytis resistance detected	
cyprodinil (Vangard)	Group 9	Not effective	Not effective	Good**	Botrytis resistance detected		
scala	Group 9	Not effective	None	Good**	Botrytis resistance detected		
azoxystrobin (Abound)	Group 11	Fair-good	Good**	Slight–fair	Powdery mildew resistance detected		
kresoxim-methyl (Sovran)	Group 11	Good	Good**	Slight–fair	Powdery mildew resistance detected		
mandestrobin	Group 11	??	Poor to mode	77	Powdery mildew resistance detected		
trifloxystrobin (Flint)	Group 11	Fair	Good**	Slight–fair	Powdery mildew resistance detected		OREGON W

Insects, Mites, and Weeds

Spray Program: Insects, Mites, and Weeds

Insecticides and Miticides

- Insecticide Resistance Action Committee (IRAC Codes)
- Canopy applications: may tank-mix with fungicides
- Herbicides
 - Herbicide Resistance Action Committee (HRAC Codes)
 - NOT tank mixed with fungicides and insecticides!
 - Pre-emergent
 - Post-emergent

For both...

Apply only when pest is present

Must rotate product active ingredients and modes of action (MoA)

Spider Mites

- Potential causes
 - Over use of sulfur
 - Dust from tillage or traffic
 - Loss of natural biological control
- Cultural controls recommended:
 - Cover crops/vegetation
 - No till
 - Reduce pesticide use that reduce biological controls
- Chemical controls
 - · When critical threshold reached

OREGON WINE

SYMPOSIUM

Erineum Mite (Blister Mites)

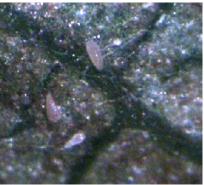
Not pest of economic concern! No chemical control required

Upper leaf surface

Lower leaf surface

Rust Mites – Early Spring

Control: Sulfur or oil applied just after bud break



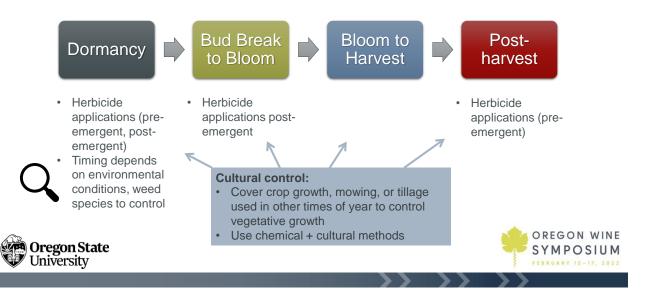
Rust Mites

Control: Add sulfur in powdery <u>mildew prog</u>ram

Mite and Insect Management

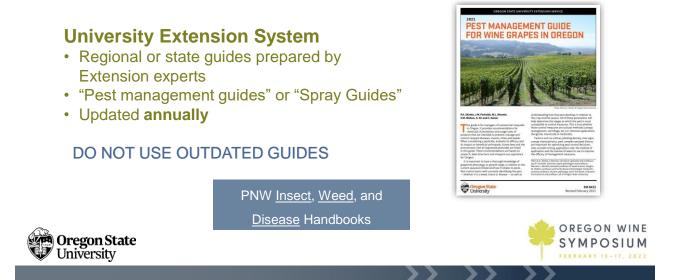
- Chemical
 - Only use when needed
- Cultural

- **X**
- Avoid tillage, especially in summer \rightarrow spider mites
- Cover cropping \rightarrow spider mites
- Mowing timing → leafhoppers and thrips
- Biological
 - Encourage natural enemies
 - cover cropping



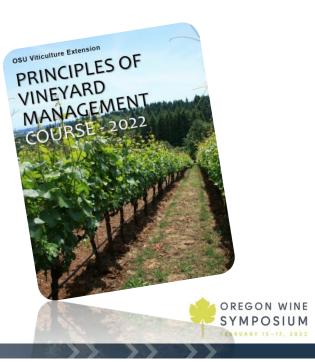
• reduced pesticide use (e.g., Sulfur for spider mites)

Weed Control Program – Chemical + Cultural


Integrated Pest Management - Summary

- Requires planning
- · Knowledge of the pest, products, and vineyard
- Proper equipment
- Suitable products
- · Personnel to apply practices in a timely manner
- · Scouting and evaluating efficacy
- Expect to reevaluate and modify plans based on season, weather

Pest Guides: Management, Pesticide use and Efficacy


Handouts available for this session...

	An one of the entropy	<section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header>	for Oregon. It is important to have a thorough knowledge on the	<section-header><image/><image/><image/><text></text></section-header>	
Oregon State University					OREGON WINE SYMPOSIUM
y			>	$\rightarrow \rightarrow \rightarrow$	\rightarrow

Want to learn more?

- Topics: establishment through
 management
- Completely online
- 10 weeks of content
- · Live or recorded lectures available
- Begins March 29, 2022

Thank you!

Patty Skinkis, PhD Professor & Viticulture Extension Specialist Oregon Wine Research Institute <u>patricia.skinkis@oregonstate.edu</u> @patty.skinkis (Instagram)

OREGON WINE SYMPOSIUM FEBRUARY 15-17, 2022